网址:http://m.1010jiajiao.com/paper/timu/5151839.html[举报]
9、如图所示是2008年北京奥运会的会徽,其中的“中国印”由四个色块构成,可以用线段在不穿越其他色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有( )
A.8种 B.12种 C.16种 D.20种
答 案
一、选择题:DABCD AAACB
二、填空题
11. ;12. [1,5]; 13.6;14. (0,] ; 15、4;16.① ④.
三、解答题
17.解(1)∵
…………………………… 3分
=
∴ ……………………………………………………………………6分
(2)………………………………………………………7分
…………………9分
=
∵ ∴∴
∴的值域为 ……………………12分
18.(本小题满分14分)
解:(1)设,则以AB为直径的圆恰好过原点O的充要条件是,即…①……2分
由消去y得 …②
…………………………5分
将其代入①得,解得或
当时,方程②为,有两个不等实根;
当时,方程②为,有两个不等实根.
故当或时,以AB为直径的圆恰好过原点O. ………………8分
(2)若关于直线对称,
则…………………………10分
将④整理得………………12分
因为所以,解之,得这个结果与③矛盾.
故不存在这样的k,使两点A、B关于直线对称. ……………………14分
18.解:(I)设P(x,y),因为A、B分别为直线和上的点,故可设 ,.
∵,
∴∴………………………4分
又,
∴.……………………………………5分
∴.
即曲线C的方程为.………………………………………6分
(II) 设N(s,t),M(x,y),则由,可得(x,y-16)= (s,t-16).
故,.……………………………………8分
∵M、N在曲线C上,
∴……………………………………9分
消去s得 .
由题意知,且,
解得 .………………………………………………………12分
又 , ∴.
解得 ().
故实数的取值范围是().………………………………14分
19.解:(1) ∵(), ……… 2分
∴,由题知,恒成立,
∴10当时,满足题意; ……… 3分
20当时,应有,
∴实数的取值范围为。 ……… 5分
(2) ∵ ,∴,
,……… 7分
当时,;
当时,;
当时,.
∴ . …………10分 (错一个扣一分)
(3) ∵,∴,在上是减函数.
∵的定义域为,值域为,
∴ , …………… 12分
②-①得:,
∵,∴.但这与“”矛盾.
∴满足题意的、不存在. ………………… 14分
21.解:(1) …………………………………………4分
(2)曲线C上点处的切线的斜率为,
故得到切线的方程为 ……………………………………6分
联立方程消去y,得:
化简得: 所以:………………8分
由得到点Pn的坐标由就得到点的坐标所以: 故数列为首项为1,公比为-2的等比数列所以: …………………………………………10分
(3)由(2)知:
所以直线的方程为:
化简得: …………………………………………12分
所以 ∴≥ ……16分