难点35  导数的应用问题 利用导数求函数的极大(小)值,求函数在连续区间[a,b]上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为新高考的又一热点.本节内容主要是指导考生对这种方法的应用. ●难点磁场 ()已知f(x)=x2+c,且f[f(x)]=f(x2+1) (1)设g(x)=f[f(x)],求g(x)的解析式; (2)设φ(x)=g(x)-λf(x),试问:是否存在实数λ,使φ(x)在(-∞,-1)内为减函数,
  • 1.()设f(x)可导,且f′(0)=0,又=-1,则f(0)(   )

    A.可能不是f(x)的极值                   B.一定是f(x)的极值

    C.一定是f(x)的极小值                   D.等于0

  • 2.()设函数fn(x)=n2x2(1-x)n(n为正整数),则fn(x)在[0,1]上的最大值为(   )

    A.0                                 B.1               

    C.                         D.

  • 3.()函数f(x)=loga(3x2+5x-2)(a>0且a≠1)的单调区间_________.

  • 4.()在半径为R的圆内,作内接等腰三角形,当底边上高为_________时它的面积最大.

  • 5.()设f(x)=ax3+x恰有三个单调区间,试确定a的取值范围,并求其单调区间.

  • 6.()设x=1与x=2是函数f(x)=alnx+bx2+x的两个极值点.

    (1)试确定常数ab的值;

    (2)试判断x=1,x=2是函数f(x)的极大值还是极小值,并说明理由.

  • 7.()已知ab为实数,且bae,其中e为自然对数的底,求证:abba.

  • 8.()设关于x的方程2x2ax-2=0的两根为αβ(αβ),函数f(x)=.

    (1)求f(α).f(β)的值;

    (2)证明f(x)是[αβ]上的增函数;

    (3)当a为何值时,f(x)在区间[αβ]上的最大值与最小值之差最小?

    [科普美文]新教材中的思维观点

    数学科学具有高度的综合性、很强的实践性,不断的发展性,中学数学新教材打破原教材的框架体系,新增添了工具性、实践性很强的知识内容,正是发展的产物.新教材具有更高的综合性和灵活多样性,更具有朝气与活力,因此,把握新教材的脉搏,培养深刻严谨灵活的数学思维,提高数学素质成为燃眉之需.

    新教材提升与增添的内容包括简易逻辑、平面向量、空间向量、线性规划、概率与统计、导数、研究型课题与实习作业等,这使得新教材中的知识内容立体交叉,联系更加密切,联通的渠道更多,并且富含更高的实用性.因此在高考复习中,要通过总结、编织科学的知识网络,求得对知识的融会贯通,揭示知识间的内在联系.做到以下几点:

  • 数学思维是科学思维的核心,思维的基石在于逻辑推理,逻辑思维能力是数学能力的核心,逻辑推理是数学思维的基本方法.

    我国著名的数学家华罗庚先生认为,学习有两个过程:一个是“从薄到厚,一个是从厚到薄”,前者是“量”的积累,后者是“质”的飞跃.雄关漫道真如铁,而今迈步从头越,只要同学们在学习中不断积累,不断探索,不断创新,定能在高考中取得骄人战绩!

难点35  导数的应用问题 利用导数求函数的极大(小)值,求函数在连续区间[a,b]上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为新高考的又一热点.本节内容主要是指导考生对这种方法的应用. ●难点磁场 ()已知f(x)=x2+c,且f[f(x)]=f(x2+1) (1)设g(x)=f[f(x)],求g(x)的解析式; (2)设φ(x)=g(x)-λf(x),试问:是否存在实数λ,使φ(x)在(-∞,-1)内为减函数,参考答案

参考答案

难点磁场

解:(1)由题意得ff(x)]=f(x2+c)=(x2+c)2+c

f(x2+1)=(x2+1)2+c,∵ff(x)]=f(x2+1)

∴(x2+c)2+c=(x2+1)2+c,

x2+c=x2+1,∴c=1

f(x)=x2+1,g(x)=ff(x)]=f(x2+1)=(x2+1)2+1

(2)φ(x)=g(x)-λf(x)=x4+(2-λ)x2+(2-λ)

若满足条件的λ存在,则φ′(x)=4x3+2(2-λ)x

∵函数φ(x)在(-∞,-1)上是减函数,

∴当x<-1时,φ′(x)<0

即4x3+2(2-λ)x<0对于x∈(-∞,-1)恒成立

∴2(2-λ)>-4x2,

x<-1,∴-4x2<-4

∴2(2-λ)≥-4,解得λ≤4

又函数φ(x)在(-1,0)上是增函数

∴当-1<x<0时,φ′(x)>0

即4x2+2(2-λ)x>0对于x∈(-1,0)恒成立

∴2(2-λ)<-4x2,

∵-1<x<0,∴-4<4x2<0

∴2(2-λ)≤-4,解得λ≥4

故当λ=4时,φ(x)在(-∞,-1)上是减函数,在(-1,0)上是增函数,即满足条件的λ存在.

歼灭难点训练

一、1.解析:由=-1,故存在含有0的区间(a,b)使当x∈(a,b),x≠0时<0,于是当x∈(a,0)时f′(0)>0,当x∈(0,b)时,f′(0)<0,这样f(x)在(a,0)上单增,在(0,b)上单减.

答案:B

2.解析:∵fn(x)=2xn2(1-x)nn3x2(1-x)n-1=n2x(1-x)n-1[2(1-x)-nx],令fn(x)=0,得x1=0,x2=1,x3=,易知fn(x)在x=时取得最大值,最大值fn()=n2()2(1-)n=4.()n+1

答案:D

二、3.解析:函数的定义域是xx<-2,f′(x)=.(3x2+5x-2)′=,

①若a>1,则当x时,logae>0,6x+5>0,(3x-1)(x+2)>0,∴f′(x)>0,∴函数f(x)在(,

+∞)上是增函数,x<-2时,f′(x)<0.∴函数f(x)在(-∞,-2)上是减函数.

②若0<a<1,则当x时,f′(x)<0,∴f(x)在(,+∞)上是减函数,当x<-2时,f′(x)>0,∴f(x)在(-∞,-2)上是增函数

答案:(-∞,-2)

4.解析:设圆内接等腰三角形的底边长为2x,高为h,那么h=AO+BO=R+,解得

x2=h(2Rh),于是内接三角形的面积为

S=x.h=

从而

S′=0,解得h=R,由于不考虑不存在的情况,所在区间(0,2R)上列表如下: 

h
(0,R)
R
(,2R)
S
+
0

S
增函数
最大值
减函数

由此表可知,当x=R时,等腰三角形面积最大.

答案:R

三、5.解:f′(x)=3ax2+1

a>0,f′(x)>0对x∈(-∞,+∞)恒成立,此时f(x)只有一个单调区间,矛盾.

a=0,f′(x)=1>0,∴x∈(-∞,+∞),f(x)也只有一个单调区间,矛盾.

a<0,∵f′(x)=3a(x+).(x),此时f(x)恰有三个单调区间.

a<0且单调减区间为(-∞,-)和(,+∞),单调增区间为(-, ).

6.解:f′(x)=+2bx+1

(1)由极值点的必要条件可知:f′(1)=f′(2)=0,即a+2b+1=0,且+4b+1=0,解方程组可得a=-,b=-,∴f(x)=-lnxx2+x

(2)f′(x)=-x-1x+1,当x∈(0,1)时,f′(x)<0,当x∈(1,2)时,f′(x)>0,当x∈(2,+∞)时,f′(x)<0,故在x=1处函数f(x)取得极小值,在x=2处函数取得极大值ln2.

7.证法一:∵bae,∴要证abba,只要证blnaalnb,设f(b)=blnaalnb(be),则

f′(b)=lna.∵bae,∴lna>1,且<1,∴f′(b)>0.∴函数f(b)=blnaalnb在(e,+∞)上是增函数,∴f(b)>f(a)=alnaalna=0,即blnaalnb>0,∴blnaalnb,∴abba.

证法二:要证abba,只要证blnaalnb(eab,即证,设f(x)=(xe),则f′(x)=<0,∴函数f(x)在(e,+∞)上是减函数,又∵eab,

f(a)>f(b),即,∴abba.

8.解:(1)f(α)=,f(β)= ,f(α)=f(β)=4

(2)设φ(x)=2x2ax-2,则当αxβ时,φ(x)<0,

∴函数f(x)在(αβ)上是增函数

(3)函数f(x)在[αβ]上最大值f(β)>0,最小值f(α)<0,

∵|f(α).f(β)|=4,∴当且仅当f(β)=-f(α)=2时,f(β)-f(α)=|f(β)|+|f(α)|取最小值4,此时a=0,f(β)=2

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网