(1)“”是“”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分不必要条件 D.既不充分也不必要条件
(2)若函数,(其中,)的最小正周期是,且,则( )
A. B.
C. D.
(3)直线关于直线对称的直线方程是( )
A. B.
C. D.
(4)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是关径为6米的圆面,则需安装这种喷水龙头的个数最少是( )
A. B. C. D.
(5)已知随机变量服从正态分布,,则( )
A. B. C. D,
(6)若两条异面直线外的任意一点,则( )
A.过点有且仅有一条直线与都平行
B.过点有且仅有一条直线与都垂直
C.过点有且仅有一条直线与都相交
D.过点有且仅有一条直线与都异面
(7)若非零向量满足,则( )
A. B.
C. D.
(8)设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是( )
(9)已知双曲线的左、右焦点分别为,,是准线上一点,且,,则双曲线的离心率是( )
A. B. C. D.
(10)设是二次函数,若的值域是,则的值域是( )
A. B.
C. D.
第II卷(共100分)
(11)已知复数,,则复数 .
(12)已知,且,则的值是 .
(13)不等式的解集是 .
(14)某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是 (用数字作答).
(15)随机变量的分布列如下:
其中成等差数列,若,则的值是 .
(16)已知点在二面角的棱上,点在内,且.若对于内异于的任意一点,都有,则二面角的大小是 .
(17)设为实数,若,则的取值范围是 .
(18)(本题14分)已知的周长为,且.
(I)求边的长;
(II)若的面积为,求角的度数.
(19)(本题14分)在如图所示的几何体中,平面,平面,,且,是的中点.
(I)求证:;
(II)求与平面所成的角.
(20)(本题14分)如图,直线与椭圆交于两点,记的面积为.
(I)求在,的条件下,的最大值;
(II)当,时,求直线的方程.
(21)(本题15分)已知数列中的相邻两项是关于的方程的两个根,且.
(I)求,,,;
(II)求数列的前项和;
(Ⅲ)记,
,
求证:.
(22)(本题15分)设,对任意实数,记.
(I)求函数的单调区间;
(II)求证:(ⅰ)当时,对任意正实数成立;
(ⅱ)有且仅有一个正实数,使得对任意正实数成立.
高中毕业班数学全国统一考试试题 数学(理工类) 第I卷(共50分)参考答案
数学(理工类)答案
一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.
(1)A (2)D (3)D (4)B (5)A
(6)B (7)C (8)D (9)B (10)C
二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分.
(11) (12) (13) (14)
(15) (16) (17)
三、解答题
(18)解:(I)由题意及正弦定理,得,
,
两式相减,得.
(II)由的面积,得,
由余弦定理,得
,
所以.
(19)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分.
方法一:
(I)证明:因为,是的中点,
所以.
又平面,
所以.
(II)解:过点作平面,垂足是,连结交延长交于点,连结,.
是直线和平面所成的角.
因为平面,
所以,
又因为平面,
所以,
则平面,因此.
设,,
在直角梯形中,
,是的中点,
所以,,,
得是直角三角形,其中,
所以.
在中,,
所以,
故与平面所成的角是.
方法二:
如图,以点为坐标原点,以,分别为轴和轴,过点作与平面垂直的直线为轴,建立直角坐标系,设,则,,.,.
(I)证明:因为,,
所以,
故.
(II)解:设向量与平面垂直,则,,
即,.
因为,,
所以,,
即,
,
直线与平面所成的角是与夹角的余角,
所以,
因此直线与平面所成的角是.
(20)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.
(Ⅰ)解:设点的坐标为,点的坐标为,
由,解得,
所以
.
当且仅当时,取到最大值.
(Ⅱ)解:由
得,
,
. ②
设到的距离为,则
,
又因为,
所以,代入②式并整理,得
,
解得,,代入①式检验,,
故直线的方程是
或或,或.
21.本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分15分.
(I)解:方程的两个根为,,
当时,,
所以;
当时,,,
所以;
当时,,,
所以时;
当时,,,
所以.
(II)解:
.
(III)证明:,
所以,
.
当时,
,
,
同时,
.
综上,当时,.
22.本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力.满分15分.
(I)解:.
由,得
.
因为当时,,
当时,,
当时,,
故所求函数的单调递增区间是,,
单调递减区间是.
(II)证明:(i)方法一:
令,则
,
当时,由,得,
当时,,
所以在内的最小值是.
故当时,对任意正实数成立.
方法二:
对任意固定的,令,则
,
由,得.
当时,.
当时,,
所以当时,取得最大值.
因此当时,对任意正实数成立.
(ii)方法一:
.
由(i)得,对任意正实数成立.
即存在正实数,使得对任意正实数成立.
下面证明的唯一性:
当,,时,
,,
由(i)得,,
再取,得,
所以,
即时,不满足对任意都成立.
故有且仅有一个正实数,
使得对任意正实数成立.
方法二:对任意,,
因为关于的最大值是,所以要使对任意正实数成立的充分必要条件是:
,
即, ①
又因为,不等式①成立的充分必要条件是,
所以有且仅有一个正实数,
使得对任意正实数成立.