题目内容



If a diver surfaces too quickly, he may suffer the bends. Nitrogen (氮) dissolved (溶解) in his blood is suddenly liberated by the reduction of pressure. The consequence, if the bubbles (气泡) accumulate in a joint, is sharp pain and a bent body—thus the name. If the bubbles form in his lungs or his brain, the consequence can be death.
Other air-breathing animals also suffer this decompression (减压) sickness if they surface too fast: whales, for example. And so, long ago, did ichthyosaurs. That these ancient sea animals got the bends can be seen from their bones. If bubbles of nitrogen form inside the bone they can cut off its blood supply. This kills the cells in the bone, and consequently weakens it, sometimes to the point of collapse. Fossil (化石) bones that have caved in on themselves are thus a sign that the animal once had the bends.
Bruce Rothschild of the University of Kansas knew all this when he began a study of ichthyosaur bones to find out how widespread the problem was in the past. What he particularly wanted to investigate was how ichthyosaurs adapted to the problem of decompression over the 150 million years. To this end, he and his colleagues traveled the world’s natural-history museums, looking at hundreds of ichthyosaurs from the Triassic period and from the later Jurassic and Cretaceous periods.
When he started, he assumed that signs of the bends would be rarer in younger fossils, reflecting their gradual evolution of measures to deal with decompression. Instead, he was astonished to discover the opposite. More than 15% of Jurassic and Cretaceous ichthyosaurs had suffered the bends before they died, but not a single Triassic specimen (标本) showed evidence of that sort of injury.
If ichthyosaurs did evolve an anti-decompression means, they clearly did so quickly—and, most strangely, they lost it afterwards. But that is not what Dr Rothschild thinks happened. He suspects it was evolution in other animals that caused the change.
Whales that suffer the bends often do so because they have surfaced to escape a predator (捕食动物) such as a large shark. One of the features of Jurassic oceans was an abundance of large sharks and crocodiles, both of which were fond of ichthyosaur lunches. Triassic oceans, by contrast, were mercifully shark- and crocodile-free. In the Triassic, then, ichthyosaurs were top of the food chain. In the Jurassic and Cretaceous, they were prey (猎物) as well as predator—and often had to make a speedy exit as a result.
【小题1】Which of the following is a typical symptom of the bends?

A.A twisted body.
B.A gradual decrease in blood supply.
C.A sudden release of nitrogen in blood.
D.A drop in blood pressure.
【小题2】The purpose of Rothschild’s study is to see ______.
A.how often ichthyosaurs caught the bends
B.how ichthyosaurs adapted to decompression
C.why ichthyosaurs bent their bodies
D.when ichthyosaurs broke their bones
【小题3】Rothschild’s finding stated in Paragraph 4 ______.
A.confirmed his assumptionB.speeded up his research process
C.disagreed with his assumptionD.changed his research objectives
【小题4】Rothschild might have concluded that ichthyosaurs ______.
A.failed to evolve an anti-decompression means
B.gradually developed measures against the bends
C.died out because of large sharks and crocodiles
D.evolved an anti-decompression means but soon lost it


【小题1】A
【小题2】B
【小题3】C
【小题4】A

解析【文章大意】本文是说明文,也可以说是研究发现,是对鱼龙等海洋生物变弯曲的原因的研究。
【小题1】从文章第一段第三句可知是身体的疼痛和弯曲。
【小题2】从文章第三段第二句可知研究是想发现在1亿5千万年前鱼龙是怎样适应减压问题的。
【小题3】从第四段第一句的“assume”和第二句中的“Instead,he was astonished to discovered the opposite.”可知答案。
【小题4】从第五段可知Rothschild认为鱼龙并没有形成抗减压的方式,他认为是其他动物的进化引起的变化。

练习册系列答案
相关题目

Just as mankind has always had a desire to fly, the human race has wanted to swim under the water since prehistoric times. Pictures of primitive devices to enable people to breathe underwater have been found dating from 3000 years ago, but our dream of moving freely beneath the ocean waves for long periods of time was only realized about 60 years ago, when French diving legend Jacques Cousteau developed the first practical Self Contained Underwater Breathing Apparatus(SCUBA). Since then the sport of SCUBA diving has gone from strength to strength.
Lovers of SCUBA diving like the feeling of weightlessness, the peace and quiet under the water, the ability to move in three dimensions and the sense of adventure they get while on a dive. SCUBA divers often travel to some of the most beautiful and remote places in the world in the search for rare underwater flora and fauna(动、植物). Palau, The Red Sea, The Maldives and Hawaii have many of the most popular diving sites, but recreational divers often have to make do with less exotic local destinations, like the North Sea in Britain.
SCUBA diving is not without its dangers, however. The mixture of nitrogen and oxygen divers breathe underwater, combined with the pressure under the water can be deadly if a diver rises too quickly to the surface, causing a condition called ‘the bends’. Divers can also get lost or trapped when diving on wrecks, and fatalities(死亡)are particularly common in cave diving, where divers add to the dangers of diving by swimming through underground caves filled with water. Diving can also be harmful to the underwater environment. However with proper precautions diving can open up a whole new world, far from the stresses of daily life.
63. What is the writer trying to do in the text?
A. Advertise some popular diving sites.
B. Describe how to dive underwater.
C. Warn people against diving in the sea.
D. Give information about SCUBA diving.
64. What can the reader learn from the text?
A. There is uncertainty about SCUBA diving safety.
B. Divers have caused a lot of damage to the environment.
C. SCUBA diving is an old sport with a long history.
D. Divers always face the pressures in their life.
65. How might the writer describe SCUBA diving?
A. Interesting.   B. Relaxing.   C. Frightening         D. Unpleasant.
66. What do you think the author is most likely to suggest if he continues to write?
A. Getting out to dive underwater.   B. Stopping damaging environment.
C. Making better use of SCUBA.       D. Getting over the troubles of daily life.

If a diver surfaces too quickly, he may suffer the bends. Nitrogen (氮) dissolved (溶解) in his blood is suddenly liberated by the reduction of pressure. The consequence, if the bubbles (气泡) accumulate in a joint, is sharp pain and a bent body — thus the name. If the bubbles form in his lungs or brain, the consequence can be death.

Other air-breathing animals also suffer this decompression (减压) sickness if they surface too fast: whales, for example. And so, long ago, did ichthyosaurs (鱼龙). That these ancient sea-animals got the bends can be seen from their bones. If bubbles of nitrogen form inside the bone they can cut off its blood supply. This kills the cells in the bone, and consequently weakens it, sometimes to the point of collapse. Fossil(化石)bones that have caved in on themselves are thus a sign that the animal once had the bends. 

Bruce Rothschild of the University of Kansas knew all this when he began a suty of ichthyosaurs bones to find out how widespread the problem was in the past. What he particularly wanted to investigate was how ichthyosaurs adapted to the problem of decompession over the 150 milllion years. To this end, he and his colleagues traveled the world’s natural-history museums, looking at hundreds of ichthyosaurs from the Trassic period and from the later Jurassic and Cretaceous periods.

When he started, he assumed that signs of the bends would be rarer in younger fossils, reflecting their gradual evolution of measures to deal with decompression. Instead, he was astonished to discover the opposite. More than 15% of Jurassic and Cretaceous ichthyosaurs had suffered the bends before the died, but not a single Trassic specimen showed evidence of that sort of injury.

If ichthyosaurs did evolve an anti-decompression means, they clearly did so quickly — and, most strangly, they lost it afterwards. But that is not what Dr Rothchild thinks happened. He suspects it was evolution in other animals that caused the change.

Whales that suffer the bends often do so because they have sufaced to escape a predator (捕食动物) such as a large shark. One of the features of the Jurassia oceans was an abundance of large sharks and crocodiles, both of which were fond of ichthyosaurs lunches. Trassic oceans, by contrast, were mercifully shark-and crocodile-free. In the Trassic, then, ichthyosaurs were top of the food chain. In the Jurrasic and Cretaceous, they were prey (猎物) as well as predator —and often had to make a speedy exit as a result.

1.Which of the following is a typical symptom of the bends?

A. A twisted body.

B. A gradual decrease in blood supply.

C. A sudden release of nitrogen in blood.

D. A drop in blood presure.

2.The purpose of Rothchild’s study is to see              .

A. how often ichthyosaurs caught the bends

B. how ichthyosaurs adapted to decompression

C. why ichthyosaurs bent their bodies

D. when ichthyosaurs broke their bones

3.Rothchild’s finding stated in Paragrapg 4            .

A. confirmed his assumption          B. speeded up his research process

C. disagreed with his assumption      D. changed his research objectives

4.Rothchild might have concluded that ichthyosaurs          .

A. failed to evole an anti-decompression means

B. grdually developed measures against the bends

C. died out because of large sharks and crocodiles

D. evoled an anti-decompression means but soon lost it

 

If a diver surfaces too quickly, he may suffer the bends. Nitrogen (氮) dissolved (溶解) in his blood is suddenly liberated by the reduction of pressure. The consequence, if the bubbles (气泡) accumulate in a joint, is sharp pain and a bent body—thus the name. If the bubbles form in his lungs or his brain, the consequence can be death.

Other air-breathing animals also suffer this decompression (减压) sickness if they surface too fast: whales, for example. And so, long ago, did ichthyosaurs. That these ancient sea animals got the bends can be seen from their bones. If bubbles of nitrogen form inside the bone they can cut off its blood supply. This kills the cells in the bone, and consequently weakens it, sometimes to the point of collapse. Fossil (化石) bones that have caved in on themselves are thus a sign that the animal once had the bends.

Bruce Rothschild of the University of Kansas knew all this when he began a study of ichthyosaur bones to find out how widespread the problem was in the past. What he particularly wanted to investigate was how ichthyosaurs adapted to the problem of decompression over the 150 million years. To this end, he and his colleagues traveled the world’s natural-history museums, looking at hundreds of ichthyosaurs from the Triassic period and from the later Jurassic and Cretaceous periods.

When he started, he assumed that signs of the bends would be rarer in younger fossils, reflecting their gradual evolution of measures to deal with decompression. Instead, he was astonished to discover the opposite. More than 15% of Jurassic and Cretaceous ichthyosaurs had suffered the bends before they died, but not a single Triassic specimen (标本) showed evidence of that sort of injury.

If ichthyosaurs did evolve an anti-decompression means, they clearly did so quickly—and, most strangely, they lost it afterwards. But that is not what Dr Rothschild thinks happened. He suspects it was evolution in other animals that caused the change.

Whales that suffer the bends often do so because they have surfaced to escape a predator (捕食动物) such as a large shark. One of the features of Jurassic oceans was an abundance of large sharks and crocodiles, both of which were fond of ichthyosaur lunches. Triassic oceans, by contrast, were mercifully shark- and crocodile-free. In the Triassic, then, ichthyosaurs were top of the food chain. In the Jurassic and Cretaceous, they were prey (猎物) as well as predator—and often had to make a speedy exit as a result.

1.Which of the following is a typical symptom of the bends?

A.A twisted body.

B.A gradual decrease in blood supply.

C.A sudden release of nitrogen in blood.

D.A drop in blood pressure.

2.The purpose of Rothschild’s study is to see ______.

A.how often ichthyosaurs caught the bends

B.how ichthyosaurs adapted to decompression

C.why ichthyosaurs bent their bodies

D.when ichthyosaurs broke their bones

3.Rothschild’s finding stated in Paragraph 4 ______.

A.confirmed his assumption                 B.speeded up his research process

C.disagreed with his assumption              D.changed his research objectives

4.Rothschild might have concluded that ichthyosaurs ______.

A.failed to evolve an anti-decompression means

B.gradually developed measures against the bends

C.died out because of large sharks and crocodiles

D.evolved an anti-decompression means but soon lost it

 

Just as mankind has always had a desire to fly, the human race has wanted to swim under the water since prehistoric times. Pictures of primitive devices to enable people to breathe underwater have been found dating from 3000 years ago, but our dream of moving freely beneath the ocean waves for long periods of time was only realized about 60 years ago, when French diving legend Jacques Cousteau developed the first practical Self Contained Underwater Breathing Apparatus(SCUBA). Since then the sport of SCUBA diving has gone from strength to strength.

Lovers of SCUBA diving like the feeling of weightlessness, the peace and quiet under the water, the ability to move in three dimensions and the sense of adventure they get while on a dive. SCUBA divers often travel to some of the most beautiful and remote places in the world in the search for rare underwater flora and fauna(动、植物). Palau, The Red Sea, The Maldives and Hawaii have many of the most popular diving sites, but recreational divers often have to make do with less exotic local destinations, like the North Sea in Britain.

SCUBA diving is not without its dangers, however. The mixture of nitrogen and oxygen divers breathe underwater, combined with the pressure under the water can be deadly if a diver rises too quickly to the surface, causing a condition called ‘the bends’. Divers can also get lost or trapped when diving on wrecks, and fatalities(死亡)are particularly common in cave diving, where divers add to the dangers of diving by swimming through underground caves filled with water. Diving can also be harmful to the underwater environment. However with proper precautions diving can open up a whole new world, far from the stresses of daily life.

63. What is the writer trying to do in the text?

A. Advertise some popular diving sites.

B. Describe how to dive underwater.

C. Warn people against diving in the sea.

D. Give information about SCUBA diving.

64. What can the reader learn from the text?

A. There is uncertainty about SCUBA diving safety.

B. Divers have caused a lot of damage to the environment.

C. SCUBA diving is an old sport with a long history.

D. Divers always face the pressures in their life.

65. How might the writer describe SCUBA diving?

A. Interesting.   B. Relaxing.   C. Frightening         D. Unpleasant.

66. What do you think the author is most likely to suggest if he continues to write?

A. Getting out to dive underwater.   B. Stopping damaging environment.

C. Making better use of SCUBA.       D. Getting over the troubles of daily life.

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网