题目内容

火星有两颗卫星,分别是火卫I和火卫II,它们的轨道近似为圆,已知火卫I的周期为7小时39分,火卫II的周期为30小时18分,则两颗卫星相比(  )
A.火卫II距火星表面较近
B.火卫II的角速度大
C.火卫I的运动速度较大
D.火卫I的向心加速度较大
卫星绕火星做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、火星质量为M,有
F=F
F=G
Mm
r2

F=m
v2
r
=mω2r=m(
T
2r
因而
G
Mm
r2
=m
v2
r
=mω2r=m(
T
2r=ma
解得
v=
GM
r

T=2π
r3
GM

ω=
GM
r3

a=
GM
r2

由于火卫二周期较大,根据②式,其轨道半径较大,再结合①③④式,可知火卫二的线速度较小、角速度较小、加速度较小;
故选CD.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网