题目内容
火星有两颗卫星,分别是火卫I和火卫II,它们的轨道近似为圆,已知火卫I的周期为7小时39分,火卫II的周期为30小时18分,则两颗卫星相比( )
| A.火卫II距火星表面较近 |
| B.火卫II的角速度大 |
| C.火卫I的运动速度较大 |
| D.火卫I的向心加速度较大 |
卫星绕火星做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、火星质量为M,有
F=F向
F=G
F向=m
=mω2r=m(
)2r
因而
G
=m
=mω2r=m(
)2r=ma
解得
v=
①
T=2π
②
ω=
③
a=
④
由于火卫二周期较大,根据②式,其轨道半径较大,再结合①③④式,可知火卫二的线速度较小、角速度较小、加速度较小;
故选CD.
F=F向
F=G
| Mm |
| r2 |
F向=m
| v2 |
| r |
| 2π |
| T |
因而
G
| Mm |
| r2 |
| v2 |
| r |
| 2π |
| T |
解得
v=
|
T=2π
|
ω=
|
a=
| GM |
| r2 |
由于火卫二周期较大,根据②式,其轨道半径较大,再结合①③④式,可知火卫二的线速度较小、角速度较小、加速度较小;
故选CD.
练习册系列答案
相关题目