题目内容
如图所示,已知倾角为θ=45°、高为h的斜面固定在水平地面上.一小球从高为H(h<H<
h)处自由下落,
与斜面做无能量损失的碰撞后水平抛出.小球自由下落的落点距斜面左侧的水平距离x满足一定条件时,小球能直接落到水平地面上.
(1)求小球落到地面上的速度大小;
(2)求要使小球做平抛运动后能直接落到水平地面上,x应满足的条件;
(3)在满足(2)的条件下,求小球运动的最长时间.
5 |
4 |
与斜面做无能量损失的碰撞后水平抛出.小球自由下落的落点距斜面左侧的水平距离x满足一定条件时,小球能直接落到水平地面上.
(1)求小球落到地面上的速度大小;
(2)求要使小球做平抛运动后能直接落到水平地面上,x应满足的条件;
(3)在满足(2)的条件下,求小球运动的最长时间.
(1)设小球落到底面的速度为v,根据机械能守恒得:
mgH=
mv2,
得:v=
(2)小球做自由落体的末速度为:v0=
小球做平抛运动的时间为:t=
s=2
由s>h-x
解得:h-
H<x<h
(3)t总=
+
t总2=
+
当H-h+x=h-x,即x=h-
时,小球运动时间最长,
x=h-
,符合(2)的条件
代入得:tm=2
答:
(1)小球落到地面上的速度大小为
;
(2)要使小球做平抛运动后能直接落到水平地面上,x应满足的条件为h-
H<x<h;
(3)在满足(2)的条件下,小球运动的最长时间为2
.
mgH=
1 |
2 |
得:v=
2gH |
(2)小球做自由落体的末速度为:v0=
2g(H-h+x) |
小球做平抛运动的时间为:t=
|
s=2
(H-h+x)?(h-x) |
由s>h-x
解得:h-
4 |
5 |
(3)t总=
|
|
t总2=
2H |
g |
4
| ||
g |
当H-h+x=h-x,即x=h-
H |
2 |
x=h-
H |
2 |
代入得:tm=2
|
答:
(1)小球落到地面上的速度大小为
2gH |
(2)要使小球做平抛运动后能直接落到水平地面上,x应满足的条件为h-
4 |
5 |
(3)在满足(2)的条件下,小球运动的最长时间为2
|
练习册系列答案
相关题目