题目内容
【题目】1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q ,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。
(1) 求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2) 求粒子从静止开始加速到出口处所需的时间t ;
(3) 实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能E㎞。
【答案】见解析
【解析】
试题(1)狭缝中加速时根据动能定理,可求出加速后的速度,然后根据洛伦兹力提供向心力,推出半径表达式;
(2)假设粒子运动n圈后到达出口,则加速了2n次,整体运用动能定理,再与洛伦兹力提供向心力,粒子运动的固有周期公式联立求解;
(3)Bm对应粒子在磁场中运动可提供的最大频率,fm对应加速电场可提供的最大频率,选两者较小者,作为其共同频率,然后求此频率下的最大动能.
解:(1)设粒子第1次经过狭缝后的半径为r1,速度为v1
qU=mv12
qv1B=m
解得
同理,粒子第2次经过狭缝后的半径
则.
(2)设粒子到出口处被加速了n圈
解得.
(3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即
当磁场感应强度为Bm时,加速电场的频率应为
粒子的动能
当fBm≤fm时,粒子的最大动能由Bm决定
解得
当fBm≥fm时,粒子的最大动能由fm决定vm=2πfmR解得
答:(1)r2:r1=:1 (2)t=(3)当fBm≤fm时,EKm=;当fBm≥fm时,EKm=.
练习册系列答案
相关题目