ÌâÄ¿ÄÚÈÝ
ºË¾Û±äÄÜÒÔ뮡¢ë°µÈΪȼÁÏ£¬¾ßÓа²È«¡¢½à¾»¡¢´¢Á¿·á¸»Èý´óÓŵ㣬ÊÇ×îÖÕ½â¾öÈËÀàÄÜԴΣ»úµÄ×îÓÐЧÊֶΣ®
£¨1£©Á½¸ö뮺Ë
H½áºÏ³ÉÒ»¸öº¤ºË
Heʱ£¬Òª·Å³öijÖÖÁ£×Ó£¬Í¬Ê±ÊͷųöÄÜÁ¿£¬Ð´³öºË·´Ó¦µÄ·½³Ì£®Èô뮺˵ÄÖÊÁ¿Îªm1£¬º¤ºËµÄÖÊÁ¿Îªm2£¬Ëù·Å³öÁ£×ÓµÄÖÊÁ¿Îªm3£¬ÇóÕâ¸öºË·´Ó¦ÖÐÊͷųöµÄÄÜÁ¿Îª¶àÉÙ£¿
£¨2£©ÒªÊ¹Á½¸ö뮺ËÄܹ»·¢Éú¾Û±ä·´Ó¦£¬±ØÐëʹËüÃÇÒÔ¾Þ´óµÄËٶȳåÆÆ¿âÂسâÁ¦¶øÅöµ½Ò»Æð£¬ÒÑÖªµ±Á½¸ö뮺ËÇ¡ºÃÄܹ»±Ë´Ë½Ó´¥·¢Éú¾Û±äʱ£¬ËüÃǵĵçÊÆÄÜΪ
£¨ÆäÖÐeΪ뮺˵ĵçÁ¿£¬RΪ뮺˰뾶£¬¦Å0Ϊ½éµç³£Êý£¬¾ùΪÒÑÖª£©£¬ÔòÁ½¸öÏà¾à½ÏÔ¶£¨¿ÉÈÏΪµçÊÆÄÜΪÁ㣩µÄµÈËÙ뮺ˣ¬ÖÁÉÙ¾ßÓжà´óµÄËٶȲÅÄÜÔÚÏàÏòÔ˶¯ºóÅöÔÚÒ»Æð¶ø·¢Éú¾Û±ä£¿
£¨3£©µ±½«ë®ºË¼ÓÈȳɼ¸°ÙÍò¶ÈµÄµÈÀë×Ó״̬ʱ¾Í¿ÉÒÔʹÆä»ñµÃËùÐèËٶȣ®ÓÐÒ»ÖÖÓôų¡À´¡°Ô¼Êø¡±¸ßεÈÀë×ÓÌåµÄ×°ÖýÐ×ö¡°Íп¨Âí¿Ë¡±£¬ÈçͼËùʾΪÆä¡°Ô¼Êø¡±ÔÀíͼ£ºÁ½¸öͬÐÄÔ²µÄ°ë¾¶·Ö±ðΪr1ºÍr2£¬µÈÀë×ÓÌåÖ»Ôڰ뾶Ϊr1µÄÔ²ÐÎÇøÓòÄÚ·´Ó¦£¬Á½Ô²Ö®¼äµÄ»·ÐÎÇøÄÚ´æÔÚ×Å´¹Ö±ÓÚ½ØÃæµÄÔÈÇ¿´Å³¡£®Îª±£Ö¤ËÙÂÊΪvµÄ뮺˴ӷ´Ó¦Çø½øÈë´Å³¡ºó²»ÄܴӴų¡ÇøÓòµÄÍâ±ß½çÉä³ö£¬Ëù¼Ó´Å³¡´Å¸ÐӦǿ¶ÈµÄ×îСֵΪ¶àÉÙ£¿£¨²»¿¼ÂÇËٶȴóС¶Ô뮺ËÖÊÁ¿µÄÓ°Ï죩
£¨1£©Á½¸ö뮺Ë
21 |
32 |
£¨2£©ÒªÊ¹Á½¸ö뮺ËÄܹ»·¢Éú¾Û±ä·´Ó¦£¬±ØÐëʹËüÃÇÒÔ¾Þ´óµÄËٶȳåÆÆ¿âÂسâÁ¦¶øÅöµ½Ò»Æð£¬ÒÑÖªµ±Á½¸ö뮺ËÇ¡ºÃÄܹ»±Ë´Ë½Ó´¥·¢Éú¾Û±äʱ£¬ËüÃǵĵçÊÆÄÜΪ
e2 |
4¦Ð¦Å0(2R) |
£¨3£©µ±½«ë®ºË¼ÓÈȳɼ¸°ÙÍò¶ÈµÄµÈÀë×Ó״̬ʱ¾Í¿ÉÒÔʹÆä»ñµÃËùÐèËٶȣ®ÓÐÒ»ÖÖÓôų¡À´¡°Ô¼Êø¡±¸ßεÈÀë×ÓÌåµÄ×°ÖýÐ×ö¡°Íп¨Âí¿Ë¡±£¬ÈçͼËùʾΪÆä¡°Ô¼Êø¡±ÔÀíͼ£ºÁ½¸öͬÐÄÔ²µÄ°ë¾¶·Ö±ðΪr1ºÍr2£¬µÈÀë×ÓÌåÖ»Ôڰ뾶Ϊr1µÄÔ²ÐÎÇøÓòÄÚ·´Ó¦£¬Á½Ô²Ö®¼äµÄ»·ÐÎÇøÄÚ´æÔÚ×Å´¹Ö±ÓÚ½ØÃæµÄÔÈÇ¿´Å³¡£®Îª±£Ö¤ËÙÂÊΪvµÄ뮺˴ӷ´Ó¦Çø½øÈë´Å³¡ºó²»ÄܴӴų¡ÇøÓòµÄÍâ±ß½çÉä³ö£¬Ëù¼Ó´Å³¡´Å¸ÐӦǿ¶ÈµÄ×îСֵΪ¶àÉÙ£¿£¨²»¿¼ÂÇËٶȴóС¶Ô뮺ËÖÊÁ¿µÄÓ°Ï죩
£¨1£©
H¡ú
He
n
¡÷E=(2m1-m2-m3)c2
£¨2£©Ò»¸ö뮺˵Ķ¯ÄÜΪ£¬
m1
¡¡¡¡¡¡
Á½¸öµÈËÙµÄ뮺ËÏàÏòÅöײºóÇ¡ÄÜ·¢Éú¾Û±ä£¬ÔòËüÃǵĶ¯Äܶ¼×ª»¯ÎªµçÊÆÄÜ
2¡Á
m1
=
ÓɢۢܽâµÃ v1=
£¨3£©ë®ºËÑØ·´Ó¦ÇøÇÐÏß·½ÏòÉäÈë´Å³¡£¬Æ«×ªºóÇ¡ºÃÓÖÓë´Å³¡Íâ±ß½çÏàÇзµ»Ø£¬´ËÔ²ÖÜÔ˶¯µÄ¹ì¼£°ë¾¶×îС£¬ËùÇó³öµÄ´Å¸ÐӦǿ¶È×î´ó£¬´Ë´Å¸ÐӦǿ¶È¼´Îª±£Ö¤ËÙÂÊΪvµÄ뮺ËÑز»Í¬·½Ïò´Ó·´Ó¦Çø½øÈë´Å³¡ºó²»ÄܴӴų¡ÇøÓòµÄÍâ±ß½çÉä³öµÄ×îСֵ£»
¸ù¾Ý¼¸ºÎ¹Øϵ£¬ÓУºr3=
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓУºevB=m1
ÁªÁ¢½âµÃ£ºB=
´ð£º£¨1£©Õâ¸öºË·´Ó¦ÖÐÊͷųöµÄÄÜÁ¿Îª(2m1-m2-m3)c2£»
£¨2£©ÖÁÉÙ¾ßÓÐ
µÄËٶȲÅÄÜÔÚÏàÏòÔ˶¯ºóÅöÔÚÒ»Æð¶ø·¢Éú¾Û±ä£»
£¨3£©Ëù¼Ó´Å³¡´Å¸ÐӦǿ¶ÈµÄ×îСֵΪ
£®
2 | 21 |
32 |
+ | 01 |
¡÷E=(2m1-m2-m3)c2
£¨2£©Ò»¸ö뮺˵Ķ¯ÄÜΪ£¬
1 |
2 |
v | 21 |
Á½¸öµÈËÙµÄ뮺ËÏàÏòÅöײºóÇ¡ÄÜ·¢Éú¾Û±ä£¬ÔòËüÃǵĶ¯Äܶ¼×ª»¯ÎªµçÊÆÄÜ
2¡Á
1 |
2 |
v | 21 |
e2 |
4¦Ð¦Å0(2R) |
ÓɢۢܽâµÃ v1=
e |
2 |
|
£¨3£©ë®ºËÑØ·´Ó¦ÇøÇÐÏß·½ÏòÉäÈë´Å³¡£¬Æ«×ªºóÇ¡ºÃÓÖÓë´Å³¡Íâ±ß½çÏàÇзµ»Ø£¬´ËÔ²ÖÜÔ˶¯µÄ¹ì¼£°ë¾¶×îС£¬ËùÇó³öµÄ´Å¸ÐӦǿ¶È×î´ó£¬´Ë´Å¸ÐӦǿ¶È¼´Îª±£Ö¤ËÙÂÊΪvµÄ뮺ËÑز»Í¬·½Ïò´Ó·´Ó¦Çø½øÈë´Å³¡ºó²»ÄܴӴų¡ÇøÓòµÄÍâ±ß½çÉä³öµÄ×îСֵ£»
¸ù¾Ý¼¸ºÎ¹Øϵ£¬ÓУºr3=
r2-r1 |
2 |
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓУºevB=m1
v2 |
r3 |
ÁªÁ¢½âµÃ£ºB=
2m1v |
(r2-r1)e |
´ð£º£¨1£©Õâ¸öºË·´Ó¦ÖÐÊͷųöµÄÄÜÁ¿Îª(2m1-m2-m3)c2£»
£¨2£©ÖÁÉÙ¾ßÓÐ
e |
2 |
|
£¨3£©Ëù¼Ó´Å³¡´Å¸ÐӦǿ¶ÈµÄ×îСֵΪ
2m1v |
(r2-r1)e |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿