题目内容

如图所示为“研究有固定转动轴物体的平衡条件”实验,力矩盘上各同心圆的间距相等。在A、B两点分别用细线悬挂若干钩码,C点挂上弹簧秤后力矩盘平衡。已知每个钩码所受的重力均为1N。
(1)此时弹簧秤示数为_____________N,B点细线上悬挂的钩码个数为_____________个;
(2)有同学在做这个实验时,发现顺时针力矩之和与逆时针力矩之和存在较大差距,检查发现读数和计算均无差错,请指出造成这种差距的一个可能原因,并提出简单的检验方法。(如例所示,将答案填在下表空格中)
(1)2.0,3
(2)
练习册系列答案
相关题目
2010年暑假期间,某学校课题研究小组为了撰写关于未知材料电阻率的实践报告,设计了一个测量电阻率的实验方案,
可提供的器材有:A、电流表G,内阻Rg=120Ω,满偏电流Ig=3mA
B、电流表A,内阻约为0.2Ω,量程为0~0.6A     C、螺旋测微器
D、电阻箱R0(0~9999Ω,0.5A)             E、滑动变阻器R0(5Ω,1A)
F、干电池组(3V,0.05Ω)               G、一个开关和导线若干
他进行了以下操作:
(1)用多用电表粗测电阻丝的阻值,当用“×10Ω”挡时发现指针偏转角度过大,他应该换用
×1Ω
×1Ω
挡(填“×1Ω”
或“×100Ω”),换挡后,在再次测量前先要
欧姆调零
欧姆调零
,进行一系列正确操作后,指针静止时图1所示,则电阻丝的阻
值约为
15Ω
15Ω

(2)用螺旋测微器测电阻丝的直径,其示数部分如图2所示,则该次测量的直径d=
0.266
0.266
mm.
(3)因无电压表、固用电流表G与电阻箱串联使用,最大测量电压为3V,则电阻箱的阻值应调为R0=
880
880
Ω.
(4)设计实验电路,根据提供的器材和实验需要,请将图3中电路图补画完整.
(5)实验数据的测量与电阻率的计算,如果电阻丝的长度用L表示,电路闭合后,调节滑动变阻器的滑片到合适位置,
电流表G的示数为I1,电流表A的示数为I2,请用已知量和测量写出计算电阻率的表达式p=
πd2I1(Rg+R0)
4L(I2-I1)
πd2I1(Rg+R0)
4L(I2-I1)

(2007?肇庆二模)某研究性学习小组,为了探索航天器球形返回舱穿过大气层时所受空气阻力(风力)的影响因素,进行了模拟实验研究.如图为测定风力的实验装置图,其中CD是一段水平放置的长为L的光滑均匀电阻丝,电阻丝电阻较大;一质量和电阻都不计的细长细长裸金属丝一端固定于O点,另一端悬挂球P,无风时细金属丝竖直,恰与电阻丝在C点接触,OC=H;有风时金属丝将偏离竖直方向,与电阻丝相交于某一点(如图中虚线所示).细金属丝与电阻丝始终保持良好的导电接触.
(1)已知电源的电动势为E,内阻不计,理想电压表两接线柱分别与O点和C点相连,球P的质量为m,重力加速度为g,由此可以推得风力大小F与电压表示数的关系式为F=
mgL
EH
U
mgL
EH
U

(2)研究小组的同学猜想:风力大小F可能与风速大小v和球半径r这两个因素有关,于是他们进行了如下的实验:
实验一:使用同一球,改变风速,记录了在不同风速下电压表的示数.
表一  球半径r=0.50cm
风速(m/s) 10 15 20 30
电压表示数(V) 2.40 3.60 4.81 7.19
由表一数据可知:在球半径一定的情况下,风力大小与风速的关系是
风力大小与风速成正比
风力大小与风速成正比

实验二:保持风速一定,换用同种材料、不同半径的实心球,记录了在球半径不同情况下电压表的示数.
表二  风速v=10m/s
球半径(cm) 0.25 0.50 0.75 1.00
电压表示数(V) 9.60 2.40 1.07 0.60
由表二数据可知:在风速一定的情况下,风力大小与球半径的关系是
成正比
成正比
.(球体积公式V=
4
3
πr3

(3)根据上述实验结果可知风力的大小F与风速大小v、球半径r的关系式为
F=kvr,式中k为常数
F=kvr,式中k为常数

第三部分 运动学

第一讲 基本知识介绍

一. 基本概念

1.  质点

2.  参照物

3.  参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)

4.绝对运动,相对运动,牵连运动:v=v+v 

二.运动的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大学教材中表述为:v=dr/dt, 表示r对t 求导数

5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是

三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。)

6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好

三.等加速运动

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。此抛物线为在大炮上方h=v2/2g处,以v0平抛物体的轨迹。) 

练习题:

一盏灯挂在离地板高l2,天花板下面l1处。灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。)

四.刚体的平动和定轴转动

1. 我们讲过的圆周运动是平动而不是转动 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是标量,而极小的角位移是矢量

4.  同一刚体上两点的相对速度和相对加速度 

两点的相对距离不变,相对运动轨迹为圆弧,VA=VB+VAB,在AB连线上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三质点速度分别V,VB  ,VC      

求G的速度。

五.课后习题:

一只木筏离开河岸,初速度为V,方向垂直于岸边,航行路线如图。经过时间T木筏划到路线上标有符号处。河水速度恒定U用作图法找到在2T,3T,4T时刻木筏在航线上的确切位置。

五、处理问题的一般方法

(1)用微元法求解相关速度问题

例1:如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D,BC段水平,当以恒定水平速度v拉绳上的自由端时,A沿水平面前进,求当跨过B的两段绳子的夹角为α时,A的运动速度。

(vA

(2)抛体运动问题的一般处理方法

  1. 平抛运动
  2. 斜抛运动
  3. 常见的处理方法

(1)将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动

(2)将沿斜面和垂直于斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题

(3)将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解

例2:在掷铅球时,铅球出手时距地面的高度为h,若出手时的速度为V0,求以何角度掷球时,水平射程最远?最远射程为多少?

(α=、 x=

第二讲 运动的合成与分解、相对运动

(一)知识点点拨

  1. 力的独立性原理:各分力作用互不影响,单独起作用。
  2. 运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律
  3. 力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等
  4. 运动的合成分解:矢量合成分解的规律方法适用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

参考系的转换:动参考系,静参考系

相对运动:动点相对于动参考系的运动

绝对运动:动点相对于静参考系统(通常指固定于地面的参考系)的运动

牵连运动:动参考系相对于静参考系的运动

(5)位移合成定理:SA对地=SAB+SB对地

速度合成定理:V绝对=V相对+V牵连

加速度合成定理:a绝对=a相对+a牵连

(二)典型例题

(1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。求解雨滴相对于地的运动。

提示:矢量关系入图

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数?

提示:V人对梯=n1/t1

      V梯对地=n/t2

      V人对地=n/t3

V人对地= V人对梯+ V梯对地

答案:n=t2t3n1/(t2-t3)t1

(3)某人驾船从河岸A处出发横渡,如果使船头保持跟河岸垂直的方向航行,则经10min后到达正对岸下游120m的C处,如果他使船逆向上游,保持跟河岸成а角的方向航行,则经过12.5min恰好到达正对岸的B处,求河的宽度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河宽l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少?

提示:如图船航行

答案:1.58m/s

(三)同步练习

1.一辆汽车的正面玻璃一次安装成与水平方向倾斜角为β1=30°,另一次安装成倾角为β2=15°。问汽车两次速度之比为多少时,司机都是看见冰雹都是以竖直方向从车的正面玻璃上弹开?(冰雹相对地面是竖直下落的)

2、模型飞机以相对空气v=39km/h的速度绕一个边长2km的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?

3.图为从两列蒸汽机车上冒出的两股长幅气雾拖尾的照片(俯视)。两列车沿直轨道分别以速度v1=50km/h和v2=70km/h行驶,行驶方向如箭头所示,求风速。

4、细杆AB长L ,两端分别约束在x 、 y轴上运动,(1)试求杆上与A点相距aL(0< a <1)的P点运动轨迹;(2)如果vA为已知,试求P点的x 、 y向分速度vPx和vPy对杆方位角θ的函数。

(四)同步练习提示与答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案为:3。

2、提示:三角形各边的方向为飞机合速度的方向(而非机头的指向);

第二段和第三段大小相同。

参见右图,显然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法与练习一类似。答案为:3

4、提示:(1)写成参数方程后消参数θ。

(2)解法有讲究:以A端为参照, 则杆上各点只绕A转动。但鉴于杆子的实际运动情形如右图,应有v = vAcosθ,v = vA,可知B端相对A的转动线速度为:v + vAsinθ=  

P点的线速度必为  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,为椭圆;(2)vPx = avActgθ ,vPy =(1 - a)vA

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网