ÌâÄ¿ÄÚÈÝ
ÔÚ¡°ÑéÖ¤»úеÄÜÊغ㶨ÂÉ¡±ÊµÑéÖУ¬´òµã¼ÆʱÆ÷½ÓÔÚµçѹΪU£¬ÆµÂÊΪfµÄ½»Á÷µçÔ´ÉÏ£¬ÔÚʵÑéÖдòÏÂÒ»ÌõÇåÎúµÄÖ½´ø£¬ÈçͼËùʾ£¬Ñ¡È¡Ö½´øÉÏ´ò³öµÄÁ¬Ðø5¸öµãA¡¢B¡¢C¡¢D¡¢E£¬²â³öAµãÓëÆðʼµãOµÄ¾àÀëΪs0£¬A¡¢CÁ½µã¼äµÄ¾àÀëΪs1£¬C¡¢EÁ½µã¼äµÄ¾àÀëΪs2£¬²âµÃÖØ´¸µÄÖÊÁ¿Îªm£¬ÒÑÖªµ±µØµÄÖØÁ¦¼ÓËÙ¶ÈΪg£¬Ôò´Ó´òÏÂÆðʼµãOµ½´òÏÂCµãµÄ¹ý³ÌÖУ¬ÖØ´¸ÖØÁ¦ÊÆÄܵļõÉÙÁ¿¡÷EP= £¬ÖØ´¸¶¯ÄܵÄÔö¼ÓÁ¿¡÷Ek= £®ÖØ´¸ÏÂÂäµÄ¼ÓËÙ¶Èa= £®
·ÖÎö£ºÖ½´ø·¨ÊµÑéÖУ¬ÈôÖ½´øÔȱäËÙÖ±ÏßÔ˶¯£¬²âµÃÖ½´øÉϵĵã¼ä¾à£¬ÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£¬¿É¼ÆËã³ö´ò³öijµãʱֽ´øÔ˶¯µÄ˲ʱËٶȣ¬´Ó¶øÇó³ö¶¯ÄÜ£®
¸ù¾Ý¹¦ÄܹØϵµÃÖØÁ¦ÊÆÄܼõСÁ¿µÈÓÚÖØÁ¦×ö¹¦µÄÊýÖµ£®
ÓÉ¡÷x=aT2Çó½â¼ÓËٶȣ®
¸ù¾Ý¹¦ÄܹØϵµÃÖØÁ¦ÊÆÄܼõСÁ¿µÈÓÚÖØÁ¦×ö¹¦µÄÊýÖµ£®
ÓÉ¡÷x=aT2Çó½â¼ÓËٶȣ®
½â´ð£º½â£ºÖØ´¸ÖØÁ¦ÊÆÄܵļõÉÙÁ¿Îª¡÷EP=mg£¨s0+s1£©£®
´òCµãÖØ´¸µÄËÙ¶ÈvC=
=
£¬
T=2¡Á
ÖØ´¸¶¯ÄܵÄÔö¼ÓÁ¿Îª¡÷Ek=
ÓÉ¡÷x=aT2µÃ£º
s2-s1=aT2£¬
a=
¹Ê´ð°¸Îª£ºmg£¨s0+s1£©£¬
£¬
´òCµãÖØ´¸µÄËÙ¶ÈvC=
XAE |
tAE |
s1+s2 |
2T |
T=2¡Á
1 |
f |
ÖØ´¸¶¯ÄܵÄÔö¼ÓÁ¿Îª¡÷Ek=
m(s1+s2)2f2 |
32 |
ÓÉ¡÷x=aT2µÃ£º
s2-s1=aT2£¬
a=
f2(s2-s1) |
4 |
¹Ê´ð°¸Îª£ºmg£¨s0+s1£©£¬
m(s1+s2)2f2 |
32 |
f2(s2-s1) |
4 |
µãÆÀ£º±¾ÌâÈÝÒ׳ö´íµÄµØ·½ÊÇT=
£¬Òª×¢ÒâÇø·ÖµçÔ´µÄÖÜÆÚÓë¼ÆÊýµãʱ¼ä¼ä¸ô£¬Ê½ÖС÷x=aT2ÖÐTÊǼÆÊýµãʱ¼ä¼ä¸ô£®
1 |
f |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿