题目内容
(2011?河北模拟)如图甲所示,足够长的光滑平行金属导轨MN、PQ所在平面与水平面成30°角,两导轨的间距l=0.50m,一端接有阻值R=1.0Ω的电阻.质量m=0.10kg的金属棒ab置于导轨上,与轨道垂直,电阻r=0.25Ω.整个装置处于磁感应强度B=1.0T的匀强磁场中,磁场方向垂直于导轨平面向下.t=0时刻,对金属棒施加一平行于导轨向上的外力F,使之由静止开始运动,运动过程中电路中的电流随时间t变化的关系如图乙所示.电路中其他部分电阻忽略
不计,g取10m/s2,求:
(1)4.0s末金属棒ab瞬时速度的大小;
(2)3.0s末力F的瞬时功率;
(3)已知0~4.0s时间内电阻R上产生的热量为0.64J,试计算F对金属棒所做的功
![](http://thumb.zyjl.cn/pic3/upload/images/201308/92/62611cf9.png)
不计,g取10m/s2,求:
(1)4.0s末金属棒ab瞬时速度的大小;
(2)3.0s末力F的瞬时功率;
(3)已知0~4.0s时间内电阻R上产生的热量为0.64J,试计算F对金属棒所做的功
![](http://thumb.zyjl.cn/pic3/upload/images/201308/92/62611cf9.png)
分析:(1)由导体棒切割磁感线产生感应电动势公式求出感应电动势,由闭合电路的欧姆定律求出电路电流,由图象求出4s末电路电流值,然后求出金属棒的速度.
(2)根据感应电流表达式及图象判断导体棒的运动性质,求出导体棒的加速度,由牛顿第二定律及安培力公式求出3s末导体棒的速度,然后由公式P=Fv求出力F的瞬时功率;
(3)由串联电路特点及焦耳定律求出导体棒产生的热量,求出整个电路产生的热量,克服安培力做的功转化为焦耳热;然后由动能定理求出力F对金属棒做的功.
(2)根据感应电流表达式及图象判断导体棒的运动性质,求出导体棒的加速度,由牛顿第二定律及安培力公式求出3s末导体棒的速度,然后由公式P=Fv求出力F的瞬时功率;
(3)由串联电路特点及焦耳定律求出导体棒产生的热量,求出整个电路产生的热量,克服安培力做的功转化为焦耳热;然后由动能定理求出力F对金属棒做的功.
解答:解:(1)导体棒切割磁感线产生感应电动势:E=Blv,
由闭合电路的欧姆定律可得,电路电流:I=
=
,
由图乙可得:t=4.0s时,I=0.8A,即:=
=0.8A,
解得:v=2m/s;
(2)由于B、l、R、r是定值,由I=
可知,I与v成正比,
由图乙可知,电流I与时间t成正比,由此可知,速度v与时间t成正比,
由此可知,导体棒做初速度为零的匀加速直线运动,
4.0s内金属棒的加速度a=
=
=0.5m/s2,
对金属棒由牛顿第二定律得:F-mgsin30°-F安=ma,
由图乙所示图象可知,t=3s时I=0.6A,此时F安=BIl=1T×0.6A×0.5m=0.3N,
则3s末,拉力F=mgsin30°+F安+ma=0.85N,
t=3s时I=0.6A,由I=
可知,t=3s时,棒的速度v=1.5m/s,
3.0s末力F的瞬时功率P=Fv=0.85N×1.5m/s=1.275W;
(3)通过R与r的电流I相等,由焦耳定律得:
=
=
=
=
,则Qr=
QR=
×0.64J=0.16J,
在该过程中电路中产生的总热量为:Q总=Qr+QR=0.8J,
在导体棒运动的过程中,克服安培力做的功转化为焦耳热,
因此在该过程中,安培力做的功W安=-Q总=-0.8J,
对金属棒,在0~4.0s内,导体棒的位移:
x=
at2=
×0.5m/s2×(4s)2=4m,
重力做的功WG=-mgxsin30°=-0.1kg×10m/s2×4m×
=-2J,
t=4s时,v=2m/s,由动能定理得:
WF+W安+WG=
mv2-0,
解得,F对金属棒所做的功:WF=3.64J;
答:(1)4.0s末金属棒ab瞬时速度的是2m/s.
(2)3.0s末力F的瞬时功率是1.275W.
(3)0~4.0s时间内F对金属棒所做的功是3.64J.
由闭合电路的欧姆定律可得,电路电流:I=
E |
R+r |
Blv |
R+r |
由图乙可得:t=4.0s时,I=0.8A,即:=
Blv |
R+r |
解得:v=2m/s;
(2)由于B、l、R、r是定值,由I=
Blv |
R+r |
由图乙可知,电流I与时间t成正比,由此可知,速度v与时间t成正比,
由此可知,导体棒做初速度为零的匀加速直线运动,
4.0s内金属棒的加速度a=
△v |
△t |
2m/s |
4s |
对金属棒由牛顿第二定律得:F-mgsin30°-F安=ma,
由图乙所示图象可知,t=3s时I=0.6A,此时F安=BIl=1T×0.6A×0.5m=0.3N,
则3s末,拉力F=mgsin30°+F安+ma=0.85N,
t=3s时I=0.6A,由I=
Blv |
R+r |
3.0s末力F的瞬时功率P=Fv=0.85N×1.5m/s=1.275W;
(3)通过R与r的电流I相等,由焦耳定律得:
Qr |
QR |
I2rt |
I2Rt |
r |
R |
0.25Ω |
1Ω |
1 |
4 |
1 |
4 |
1 |
4 |
在该过程中电路中产生的总热量为:Q总=Qr+QR=0.8J,
在导体棒运动的过程中,克服安培力做的功转化为焦耳热,
因此在该过程中,安培力做的功W安=-Q总=-0.8J,
对金属棒,在0~4.0s内,导体棒的位移:
x=
1 |
2 |
1 |
2 |
重力做的功WG=-mgxsin30°=-0.1kg×10m/s2×4m×
1 |
2 |
t=4s时,v=2m/s,由动能定理得:
WF+W安+WG=
1 |
2 |
解得,F对金属棒所做的功:WF=3.64J;
答:(1)4.0s末金属棒ab瞬时速度的是2m/s.
(2)3.0s末力F的瞬时功率是1.275W.
(3)0~4.0s时间内F对金属棒所做的功是3.64J.
点评:本题难度较大,是一道电磁感应与电路、运动学相结合的综合题,分析清楚棒的运动过程、由图象找出某时刻所对应的电流、应用相关知识,是正确解题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目