题目内容

【题目】如图所示,一个质量为M的人,站在台秤上,一长为R的悬线一端系一个质量为m小球,手拿悬线另一端,小球绕悬线另一端点在竖直平面内做圆周运动,且小球恰好能通过圆轨道最高点,则下列说法正确是(

A.小球运动到最低点时,台秤的示数最大且为(M+6m)g

B.小球运动到最高点时,台秤的示数最小且为Mg

C.小球在a、b、c三个位置台秤的示数相同

D.小球从最高点运动到最低点的过程中台秤的示数增大,人处于超重状态

【答案】AC

【解析】

试题分析:小球恰好能通过圆轨道最高点,在最高点,细线中拉力为零,由圆周运动公式:,解得:,小球从最高点运动到最低点,由动能定理: ,在最低点,由牛顿第二定律:,联立解得细线中拉力F=6mg.小球运动到最低点时,台秤的示数最大且为N=Mg+F=(M+6m)g,选项A正确;小球运动到最高点时,细线中拉力为零,台秤的示数为Mg,但是不是最小,当小球处于如图所示状态时,设其速度为v1,由牛顿第二定律有: , 解得悬线拉力: , 其分为:,当cosθ=0.5,即θ=60°时,台秤的最小示数为,故 B错误;小球在a、b、c三个位置,小球均处于完全失重状态,台秤的示数相同,选项C正确;人没有运动,不会有超重失重状态,故D错误。所以AC正确,BD错误。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网