题目内容
【题目】如图所示,摩托车做腾跃特技表演,沿曲面冲上高0.8m顶部水平高台,接着以v=3m/s水平速度离开平台,落至地面时,恰能无碰撞地沿圆弧切线从A点切入光滑竖直圆弧轨道,并沿轨道下滑。A、B为圆弧两端点,其连线水平。已知圆弧半径为R=1.0m,人和车的总质量为180kg,特技表演的全过程中,阻力忽略不计。(计算中取g=10m/s2,sin53°=0.8,cos53°=0.6)。求:
(1)人和车运动到圆弧轨道最低点O速度v=m/s此时对轨道的压力的大小.
(2)从平台飞出到A点,人和车运动的水平距离s;
(3)从平台飞出到达A点时速度及圆弧对应圆心角θ;
(4)人和车运动到达圆弧轨道A点时对轨道的压力的大小;
【答案】(1)7740N(2)1.2m(3)106°(4)6580 N
【解析】(1)在O点:
所以N=7740N
由牛顿第三定律可知,人和车在最低点O时对轨道的压力为7740N
(2)由 ,
可得:
(3)摩托车落至A点时,其竖直方向的分速度 vy=gt=4m/s
到达A点时速度
设摩托车落地时速度方向与水平方向的夹角为α,则
即α=53°
所以θ=2α=106°
(4)
所以NA= 5580 N
由牛顿第三定律可知,人和车在最低点O时对轨道的压力为6580 N
练习册系列答案
相关题目