ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬Ð¡Ä¾¿éAÓÃϸÏßµõÔÚOµã£¬´Ë¿ÌСÎï¿éµÄÖØÁ¦ÊÆÄÜΪÁ㣮һ¿Å×Óµ¯ÒÔÒ»¶¨µÄˮƽËÙ¶ÈÉäÈëľ¿éAÖУ¬²¢Á¢¼´ÓëAÓй²Í¬µÄËٶȣ¬È»ºóÒ»Æð°Ú¶¯µ½×î´ó°Ú½Ç¦Á£®Èç¹û±£³Ö×Óµ¯ÖÊÁ¿ºÍÈëÉäµÄËٶȴóС²»±ä£¬¶øʹСľ¿éµÄÖÊÁ¿ÉÔ΢Ôö´ó£¬¹ØÓÚ×î´ó°Ú½Ç¦Á¡¢×Óµ¯µÄ³õ¶¯ÄÜÓëľ¿éºÍ×Óµ¯Ò»Æð´ïµ½×î´ó°Ú½ÇʱµÄ»úеÄÜÖ®²î¡÷E£¬ÓУ¨¡¡¡¡£©
·ÖÎö£º×Óµ¯ÉäÈëľ¿éµÄ¹ý³ÌÖж¯Á¿Êغ㣬ÔÚľ¿éÓë×Óµ¯°Ú¶¯µÄ¹ý³ÌÖУ¬»úеÄÜÊغ㣬ËùÒÔ×Óµ¯µÄ³õ¶¯ÄÜÓëľ¿éºÍ×Óµ¯Ò»Æð´ïµ½×î´ó°Ú½ÇʱµÄ»úеÄÜÖ®²î¡÷EµÈÓÚ×Óµ¯ÉäÈëľ¿é¹ý³ÌÖлúеÄܵÄËðʧ£®
½â´ð£º½â£º¸ù¾Ý¶¯Á¿ÊغãµÃ£¬mv=£¨M+m£©v¡ä£¬½âµÃv¡ä=
£®
СÎï¿éÓë×Óµ¯ÏµÍ³µÄ»úеÄÜE2=
(M+m)v¡ä2=
£¬Ð¡Ä¾¿éµÄÖÊÁ¿MÔö´ó£¬Ôòϵͳ»úеÄܼõС£¬´ïµ½×î´óµÄ°Ú½Ç¼õС£®
ϵͳ»úеÄܵÄËðʧ¡÷E=
mv2-E2=
mv2(1-
)£¬MÔö´ó£¬Ôò¡÷EÔö´ó£®¹ÊCÕýÈ·£¬A¡¢B¡¢D´íÎó£®
¹ÊÑ¡C£®
mv |
M+m |
СÎï¿éÓë×Óµ¯ÏµÍ³µÄ»úеÄÜE2=
1 |
2 |
mv2 |
2(M+m) |
ϵͳ»úеÄܵÄËðʧ¡÷E=
1 |
2 |
1 |
2 |
1 |
M+m |
¹ÊÑ¡C£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁ˶¯Á¿Êغ㶨ÂÉ¡¢»úеÄÜÊغ㶨ÂÉÒÔ¼°ÄÜÁ¿Êغ㶨ÂÉ£¬ÖªµÀ×Óµ¯µÄ³õ¶¯ÄÜÓëľ¿éºÍ×Óµ¯Ò»Æð´ïµ½×î´ó°Ú½ÇʱµÄ»úеÄÜÖ®²î¡÷EµÈÓÚ×Óµ¯ÉäÈëľ¿é¹ý³ÌÖлúеÄܵÄËðʧ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿