题目内容
【题目】如图所示,水平放置的U形导轨足够长,置于方向竖直向上的匀强磁场中,磁感应强度大小为B=5T,导轨宽度L=0.4m,左侧与R=0.5Ω的定值电阻连接。右侧有导体棒ab跨放在导轨上,导体棒ab质量m=2.0kg,电阻r=0.5Ω,与导轨的动摩擦因数μ=0.2,其余电阻可忽略不计。导体棒ab在大小为10N的水平外力F作用下,由静止开始运动了x=40cm后,速度达到最大,取g=10m/s2.求:
(1)导体棒ab运动的最大速度是多少?
(2)当导体棒ab的速度v=1ms时,导体棒ab的加速度是多少?
(3)导体棒ab由静止达到最大速度的过程中,电阻R上产生的热量是多少?
【答案】(1)vm=1.5m/s (2)a=1m/s2 (3)QR=0.075J
【解析】
(1)导体棒ab垂直切割磁感线,产生的电动势大小:E=BLv,
由闭合电路的欧姆定律得:
导体棒受到的安培力:FA=BIL,
当导体棒做匀速直线运动时速度最大,由平衡条件得:
解得最大速度:vm=1.5m/s;
(2)当速度为v由牛顿第二定律得:
解得:a=1m/s2;
(3)在整个过程中,由能量守恒定律可得:
解得:Q=0.15J,
所以QR=0.075J。
练习册系列答案
相关题目