ÌâÄ¿ÄÚÈÝ
18£®ÈçͼΪ¡°¸ß·ÖÒ»ºÅ¡±ÎÀÐÇÓë±±¶·µ¼º½ÏµÍ³Öеġ°G1¡±ÎÀÐÇ£¬ÔÚ¿ÕÖÐijһƽÃæÄÚÈƵØÐÄO×öÔÈËÙÔ²ÖÜÔ˶¯µÄʾÒâͼ£®ÒÑÖªÎÀÐÇ¡°G1¡±µÄ¹ìµÀ°ë¾¶Îªr£¬µØÇò±íÃæµÄÖØÁ¦¼ÓËÙ¶ÈΪg£¬µØÇò°ë¾¶ÎªR£¬ÍòÓÐÒýÁ¦³£Á¿ÎªG£®Ôò£¨¡¡¡¡£©A£® | ¡°¸ß·ÖÒ»ºÅ¡±µÄ¼ÓËٶȴóÓÚÎÀÐÇ¡°G1¡±µÄ¼ÓËÙ¶È | |
B£® | ¡°¸ß·ÖÒ»ºÅ¡±µÄÔËÐÐËٶȴóÓÚµÚÒ»ÓîÖæËÙ¶È | |
C£® | µØÇòµÄÖÊÁ¿Îª$\frac{g{r}^{2}}{G}$ | |
D£® | ÎÀÐÇ¡°G1¡±µÄÖÜÆÚΪ$\frac{2¦Ðr}{R}$$\sqrt{\frac{r}{g}}$ |
·ÖÎö ÎÀÐÇÈƵØÇò×öÔ²ÖÜÔ˶¯£¬ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬Ó¦ÓÃÍòÓÐÒýÁ¦¹«Ê½ÓëÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËٶȡ¢ÏßËٶȡ¢ÖÜÆÚ£¬È»ºó´ðÌ⣮
½â´ð ½â£ºA¡¢ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºG$\frac{Mm}{{r}^{2}}$=ma£¬½âµÃ£ºa=$\frac{GM}{{r}^{2}}$£¬ÓÉͼʾ¿ÉÖª£¬¡°¸ß·ÖÒ»ºÅ¡±µÄ°ë¾¶Ð¡ÓÚÎÀÐÇ¡°G1¡±µÄ°ë¾¶£¬Ôò¡°¸ß·ÖÒ»ºÅ¡±µÄ¼ÓËٶȴóÓÚÎÀÐÇ¡°G1¡±µÄ¼ÓËٶȣ¬¹ÊAÕýÈ·£»
B¡¢ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºG$\frac{Mm}{{r}^{2}}$=m$\frac{{v}^{2}}{r}$£¬½âµÃ£ºv=$\sqrt{\frac{GM}{r}}$£¬¡°¸ß·ÖÒ»ºÅ¡±µÄ¹ìµÀ°ë¾¶´óÓÚµØÇò°ë¾¶£¬Ôò¡°¸ß·ÖÒ»ºÅ¡±µÄÏßËÙ¶ÈСÓÚµÚÒ»ÓîÖæËٶȣ¬¹ÊB´íÎó£»
C¡¢µØÇò±íÃæµÄÎïÌåÊܵ½µÄÖØÁ¦µÈÓÚÍòÓÐÒýÁ¦£¬¼´£ºG$\frac{Mm}{{R}^{2}}$=mg£¬½âµÃ£¬µØÇòµÄÖÊÁ¿£ºM=$\frac{g{R}^{2}}{G}$£¬¹ÊC´íÎó£»
D¡¢ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºG$\frac{Mm}{{r}^{2}}$=m$£¨\frac{2¦Ð}{T}£©^{2}$r£¬½âµÃ£ºT=$\frac{2¦Ðr}{R}$$\sqrt{\frac{r}{g}}$£¬¹ÊDÕýÈ·£»
¹ÊÑ¡£ºAD£®
µãÆÀ ±¾Ì⿼²éÁËÍòÓÐÒýÁ¦¶¨ÂɵÄÓ¦Óã¬ÖªµÀÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬Ó¦ÓÃÍòÓÐÒýÁ¦¹«Ê½ÓëÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÒÔ½âÌ⣬עÒâ»Æ½ð´ú»»µÄÓ¦Óã®
A£® | ¹¤×÷µçѹµÍ | |
B£® | ÿ¶ÔÊÂʵµç¼«µÄÕý¸ºµç¼«¼ä¾àÀë·Ç³£Ð¡ | |
C£® | Á½¸ö»îÐÔÌ¿µç¼«¿¿µÃºÜ½ü | |
D£® | »îÐÔÌ¿µç¼«µÄ±íÃæ»ý·Ç³£´ó |
A£® | ²¼ÀÊÔ˶¯¾ÍÊÇ·Ö×ÓµÄÎÞ¹æÔòÔ˶¯ | B£® | ²¼ÀÊÔ˶¯ÊÇÒºÌå·Ö×ÓµÄÎÞ¹æÔòÔ˶¯ | ||
C£® | ζÈÔ½¸ß£¬²¼ÀÊÔ˶¯Ô½¾çÁÒ | D£® | ÔÚ00CµÄ»·¾³ÖУ¬²¼ÀÊÔ˶¯Ïûʧ |
A£® | A¡¢B¼ÓËÙʱµÄ¼ÓËٶȴóС֮±ÈΪ5£º1£¬ | |
B£® | A¡¢B¼õËÙʱµÄ¼ÓËٶȴóС֮±ÈΪ2£º1 | |
C£® | ÔÚt=3t0ʱ¿Ì£¬A¡¢BÏà¾à×îÔ¶ | |
D£® | ÔÚt=6t0ʱ¿Ì£¬A¡¢BÏàÓö |
A£® | ´Ó¸ßÄܼ¶Ïòn=1Äܼ¶Ô¾Ç¨Ê±·¢³öµÄ¹âµÄ²¨³¤±È¿É¼û¹âµÄ¶Ì | |
B£® | ´Ó¸ßÄܼ¶Ïòn=2Äܼ¶Ô¾Ç¨Ê±·¢³öµÄ¹â¾ùΪ¿É¼û¹â | |
C£® | ´Ón=3Äܼ¶Ïòn=2Äܼ¶Ô¾Ç¨Ê±·¢³öµÄ¹âΪ¿É¼û¹â | |
D£® | ´Ón=4Äܼ¶Ïòn=2Äܼ¶Ô¾Ç¨Ê±·¢³öµÄ¹âΪ¿É¼û¹â | |
E£® | ´Ó¸ßÄܼ¶n=3Äܼ¶Ô¾Ç¨Ê±·¢³öµÄ¹âµÄƵÂʱȿɼû¹âµÄ¸ß |