ÌâÄ¿ÄÚÈÝ
Èçͼ¼×Ëùʾ£¬³¡Ç¿´óСΪE¡¢·½ÏòÊúÖ±ÏòÉϵÄÔÈÇ¿µç³¡ÄÚ´æÔÚ×ÅÒ»°ë¾¶ÎªRµÄÔ²ÐÎÇøÓò£¬OµãΪ¸ÃÔ²ÐÎÇøÓòµÄÔ²ÐÄ£¬AµãÊÇÔ²ÐÎÇøÓòµÄ×îµÍµã£¬BµãÊÇ×îÓÒ²àµÄµã£®ÔÚAµãÓзÅÉäÔ´Êͷųö³õËٶȴóС²»Í¬¡¢·½Ïò¾ù´¹Ö±ÓÚ³¡Ç¿ÏòÓÒµÄÕýµçºÉ£¬µçºÉµÄÖÊÁ¿Îªm£¬µçÁ¿Îªq£¬²»¼ÆÖØÁ¦£®ÊÔÇó£º
£¨1£©µçºÉÔڵ糡ÖÐÔ˶¯µÄ¼ÓËٶȶà´ó£¿
£¨2£©Ô˶¯¹ì¼£¾¹ýBµãµÄµçºÉÔÚAµãʱµÄËٶȶà´ó£¿
£¨3£©Ä³µçºÉµÄÔ˶¯µÄ¹ì¼£ºÍÔ²ÐÎÇøÓòµÄ±ßÔµ½»ÓÚPµã£¬¡ÏPOA=¦È£¬Çëд³ö¸ÃµçºÉ¾¹ýPµãʱ¶¯Äܵıí´ïʽ£®
£¨4£©ÈôÔÚÔ²ÐÎÇøÓòµÄ±ßÔµÓÐÒ»½ÓÊÕÆÁCBD£¬C¡¢D·Ö±ðΪ½ÓÊÕÆÁÉÏ×î±ßÔµµÄÁ½µã£¬ÈçͼÒÒ£¬¡ÏCOB=¡ÏBOD=30¡ã£®Çó¸ÃÆÁÉϽÓÊÕµ½µÄµçºÉµÄÄ©¶¯ÄÜ´óСµÄ·¶Î§£®
£¨1£©µçºÉÔڵ糡ÖÐÔ˶¯µÄ¼ÓËٶȶà´ó£¿
£¨2£©Ô˶¯¹ì¼£¾¹ýBµãµÄµçºÉÔÚAµãʱµÄËٶȶà´ó£¿
£¨3£©Ä³µçºÉµÄÔ˶¯µÄ¹ì¼£ºÍÔ²ÐÎÇøÓòµÄ±ßÔµ½»ÓÚPµã£¬¡ÏPOA=¦È£¬Çëд³ö¸ÃµçºÉ¾¹ýPµãʱ¶¯Äܵıí´ïʽ£®
£¨4£©ÈôÔÚÔ²ÐÎÇøÓòµÄ±ßÔµÓÐÒ»½ÓÊÕÆÁCBD£¬C¡¢D·Ö±ðΪ½ÓÊÕÆÁÉÏ×î±ßÔµµÄÁ½µã£¬ÈçͼÒÒ£¬¡ÏCOB=¡ÏBOD=30¡ã£®Çó¸ÃÆÁÉϽÓÊÕµ½µÄµçºÉµÄÄ©¶¯ÄÜ´óСµÄ·¶Î§£®
·ÖÎö£ºµçºÉ´ÓAµ½P×öÀàƽÅ×Ô˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËٶȣ®µçºÉˮƽ·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬ÊúÖ±·½Ïò×öÔȼÓËÙÖ±ÏßÔ˶¯£¬´ËµçºÉˮƽλÒÆΪRsin¦È£¬ÊúֱλÒÆΪR-Rcos¦È£¬ÓÉÔ˶¯Ñ§¹«Ê½ºÍ¼¸ºÎ¹ØϵÇó³ö¸ÃµçºÉ´ÓAµã³ö·¢Ê±µÄËÙÂÊ£®
µ±µçºÉ´òµ½Cµãʱ£¬µç³¡Á¦×ö¹¦×î´ó£¬µçºÉ»ñµÃµÄ¶¯ÄÜ×î´ó£¬´òÔÚDµãµç³¡Á¦×îС£¬»ñµÃµÄ¶¯ÄÜ×îС£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó½â¸ÃÆÁÉϽÓÊÕµ½µÄµçºÉµÄ×î´ó¶¯ÄܺÍ×îС¶¯ÄÜ£®
µ±µçºÉ´òµ½Cµãʱ£¬µç³¡Á¦×ö¹¦×î´ó£¬µçºÉ»ñµÃµÄ¶¯ÄÜ×î´ó£¬´òÔÚDµãµç³¡Á¦×îС£¬»ñµÃµÄ¶¯ÄÜ×îС£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó½â¸ÃÆÁÉϽÓÊÕµ½µÄµçºÉµÄ×î´ó¶¯ÄܺÍ×îС¶¯ÄÜ£®
½â´ð£º½â£º£¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵã¬a=
£®
£¨2£©ÓÉR=v0t£¬R=
at2 ¼°a=
µÃ£¬
ÁªÁ¢Èý¸öʽ×ӿɽâµÃ£ºv0=
£®
£¨3£©Rsin¦È=v0t£¬R-Rcos¦È=
at2¼°a=
Èý¸öʽ×ӿɵÃv02=
m v02=
=
¾¹ýPµãʱµÄ¶¯ÄÜ£ºEk=Eq£¨R-Rcos¦È£©+
m v02=
EqR £¨5-3cos¦È£©
£¨4£©Óɵڣ¨3£©Ð¡ÌâµÄ½áÂÛ¿ÉÒÔ¿´³ö£¬µ±¦È´Ó0¡ã±ä»¯µ½180¡ã£¬½ÓÊÕÆÁÉϵçºÉµÄ¶¯ÄÜÖð½¥Ôö´ó£¬Òò´ËDµã½ÓÊÕµ½µÄµçºÉµÄÄ©¶¯ÄÜ×îС£¬Cµã½ÓÊÕµ½µÄµçºÉµÄÄ©¶¯ÄÜ×î´ó£®£¨2·Ö£©
EkD=Eq£¨R-Rcos¦È£©+
m v0D2=
EqR £¨5-3cos60¡ã£©=
EqR
EkC=Eq£¨R-Rcos¦È£©+
m v0C2=
EqR £¨5-3cos120¡ã£©=
EqR
ËùÒÔ£¬ÆÁÉϽÓÊÕµ½µÄµçºÉµÄÄ©¶¯ÄÜ´óСµÄ·¶Î§Îª[
EqR£¬
EqR]
´ð£º£¨1£©µçºÉÔڵ糡ÖÐÔ˶¯µÄ¼ÓËÙ¶ÈΪ
£®
£¨2£©Ô˶¯¹ì¼£¾¹ýBµãµÄµçºÉÔÚAµãʱµÄËÙ¶ÈΪ
£®
£¨3£©¸ÃµçºÉ¾¹ýPµãʱ¶¯Äܵıí´ïʽ
EqR £¨5-3cos¦È£©
£¨4£©¸ÃÆÁÉϽÓÊÕµ½µÄµçºÉµÄÄ©¶¯ÄÜ´óСµÄ·¶Î§Îª[
EqR£¬
EqR]£®
qE |
m |
£¨2£©ÓÉR=v0t£¬R=
1 |
2 |
qE |
m |
ÁªÁ¢Èý¸öʽ×ӿɽâµÃ£ºv0=
|
£¨3£©Rsin¦È=v0t£¬R-Rcos¦È=
1 |
2 |
qE |
m |
Rsin2¦È |
2m(1-cos¦È) |
1 |
2 |
Rsin2¦È |
4(1-cos¦È) |
R(1+cos¦È) |
4 |
¾¹ýPµãʱµÄ¶¯ÄÜ£ºEk=Eq£¨R-Rcos¦È£©+
1 |
2 |
1 |
4 |
£¨4£©Óɵڣ¨3£©Ð¡ÌâµÄ½áÂÛ¿ÉÒÔ¿´³ö£¬µ±¦È´Ó0¡ã±ä»¯µ½180¡ã£¬½ÓÊÕÆÁÉϵçºÉµÄ¶¯ÄÜÖð½¥Ôö´ó£¬Òò´ËDµã½ÓÊÕµ½µÄµçºÉµÄÄ©¶¯ÄÜ×îС£¬Cµã½ÓÊÕµ½µÄµçºÉµÄÄ©¶¯ÄÜ×î´ó£®£¨2·Ö£©
EkD=Eq£¨R-Rcos¦È£©+
1 |
2 |
1 |
4 |
7 |
8 |
EkC=Eq£¨R-Rcos¦È£©+
1 |
2 |
1 |
4 |
13 |
8 |
ËùÒÔ£¬ÆÁÉϽÓÊÕµ½µÄµçºÉµÄÄ©¶¯ÄÜ´óСµÄ·¶Î§Îª[
7 |
8 |
13 |
8 |
´ð£º£¨1£©µçºÉÔڵ糡ÖÐÔ˶¯µÄ¼ÓËÙ¶ÈΪ
qE |
m |
£¨2£©Ô˶¯¹ì¼£¾¹ýBµãµÄµçºÉÔÚAµãʱµÄËÙ¶ÈΪ
|
£¨3£©¸ÃµçºÉ¾¹ýPµãʱ¶¯Äܵıí´ïʽ
1 |
4 |
£¨4£©¸ÃÆÁÉϽÓÊÕµ½µÄµçºÉµÄÄ©¶¯ÄÜ´óСµÄ·¶Î§Îª[
7 |
8 |
13 |
8 |
µãÆÀ£º±¾ÌâÊÇƽÅ×Ô˶¯ºÍ¶¯Äܶ¨ÀíµÄ×ÛºÏÓ¦Óã¬Í¬Ê±Òª³ä·ÖÓ¦Óü¸ºÎ֪ʶ¸¨ÖúÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿