题目内容
【题目】一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s后警车发动起来,并以2.5m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h以内.问:
(1)警车在追赶货车的过程中,两车间的最大距离是多少?
(2)警车发动后要多长时间才能追上货车?
【答案】(1)75m;(2)12s
【解析】
试题分析:(1)警车在追赶货车的过程中,当两车速度相等时,它们间的距离最大,
设警车发动后经过t1时间两车的速度相等.则有:t1=v1/a=4s,
此时货车的位移为:s货=(t0+t1)v1=(5.5+4)×10 m=95 m,
警车的位移为:s警=.
所以两车间的最大距离为:△s=s货﹣s警=75 m.
(2)v0=90 km/h=25 m/s,当警车刚达到最大速度时,运动时间为:t2=vm/a=10s, 此时货车的位移为:s′货=(t2+t0)v1=(5.5+10)×10 m=155 m,警车的位移为:s′警=。
因为s′货>s′警,故此时警车尚未赶上货车,且此时两车距离为:△s′=s′货﹣s′警=30 m
警车达到最大速度后做匀速运动,设再经过△t时间追赶上货车,则有:
所以警车发动后要经过t=t2+△t=12 s才能追上货车.
练习册系列答案
相关题目