ÌâÄ¿ÄÚÈÝ
4£®ÈçͼËùʾ£¬M¡¢NΪÁ½¿é´øµÈÁ¿ÒìÖÖµçºÉµÄƽÐнðÊô°å£¬Á½°å¼äµçѹ¿ÉÈ¡´ÓÁ㵽ijһ×î´óÖµÖ®¼äµÄ¸÷ÖÖÊýÖµ£®¾²Ö¹µÄ´øµçÁ£×Ó´øµçºÉÁ¿Îª+q£¬ÖÊÁ¿Îªm£¨²»¼ÆÖØÁ¦£©£¬´ÓµãP¾µç³¡¼ÓËٺ󣬴ÓС¿×Q½øÈëN°åÓÒ²àµÄÔÈÇ¿´Å³¡ÇøÓò£¬´Å¸ÐӦǿ¶È´óСΪB£¬·½Ïò´¹Ö±ÓÚÖ½ÃæÏòÍ⣬CDΪ´Å³¡±ß½çÉϵÄÒ»¾øÔµ°å£¬ËüÓëN°åµÄ¼Ð½ÇΪ¦È=45¡ã£¬¿×Qµ½°åµÄ϶ËCµÄ¾àÀëL£¬µ±M¡¢NÁ½°å¼äµçѹȡ×î´óֵʱ£¬Á£×ÓÇ¡´¹Ö±´òÔÚCD°åÉÏ£¬Ç󣺣¨1£©Á½°å¼äµçѹµÄ×î´óÖµUm£»
£¨2£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄ×ʱ¼ätm
£¨3£©CD°åÉÏ¿ÉÄܱ»Á£×Ó´òÖеÄÇøÓòµÄ³¤¶Èx£®
·ÖÎö £¨1£©Á£×ÓÇ¡ºÃ´¹Ö±´òÔÚCD°åÉÏ£¬¸ù¾ÝÁ£×ÓµÄÔ˶¯µÄ¹ì¼££¬¿ÉÒÔÇóµÃÁ£×ÓÔ˶¯µÄ°ë¾¶£¬Óɰ뾶¹«Ê½¿ÉÒÔÇóµÃµçѹµÄ´óС£»
£¨2£©´òÔÚQE¼äµÄÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼ä×£¬Îª°ë¸öÖÜÆÚ£¬¸ù¾ÝÖÜÆÚ¹«Ê½¼´¿ÉÇó½â£®
£¨3£©µ±Á£×ÓµÄÔ˶¯µÄ¹ì¼£Ç¡ºÃÓëCD°åÏàÇÐʱ£¬ÕâÊÇÁ£×ÓÄÜ´ïµ½µÄ×îϱߵıßÔµ£¬ÔÚÓɼ¸ºÎ¹Øϵ¿ÉÒÔÇóµÃ±»Á£×Ó´òÖеÄÇøÓòµÄ³¤¶È£®
½â´ð ½â£º£¨1£©¾ÝÌ⣬M¡¢NÁ½°å¼äµçѹȡ×î´óֵʱ£¬Á£×ÓÇ¡´¹Ö±´òÔÚCD°åÉÏ£¬ËùÒÔÆä¹ì¼£Ô²ÐÄÔÚCµã£¬CH=QC=L£¬¹Ê¹ì¼£°ë¾¶R1=L
ÓÖÓÉÅ£¶ÙµÚ¶þ¶¨Âɵà qvB=m$\frac{{v}_{1}^{2}}{{R}_{1}}$
Á£×ÓÔÚMN¼ä¼ÓËÙʱ£¬ÓÐ qUm=$\frac{1}{2}$$m{v}_{1}^{2}$
ËùÒÔÁªÁ¢µÃ Um=$\frac{q{B}^{2}{L}^{2}}{2m}$
£¨2£©´òÔÚQE¼äµÄÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼ä×£¬¾ùΪ°ëÖÜÆÚ£®
Á£×ÓÔ˶¯µÄÖÜÆÚΪ T=$\frac{2¦Ðm}{qB}$
ËùÒÔ×ʱ¼ätm=$\frac{T}{2}$=$\frac{¦Ðm}{qB}$
£¨3£©Éè¹ì¼£ÓëCD°åÏàÇÐÓÚKµã£¬°ë¾¶ÎªR2£¬ÔÚ¡÷AKCÖУº
sin45¡ã=$\frac{{R}_{2}}{L-{R}_{2}}$
¿ÉµÃ R2=£¨$\sqrt{2}$-1£©L
¼´KC³¤µÈÓÚ R2=£¨$\sqrt{2}$-1£©L
ËùÒÔCD°åÉÏ¿ÉÄܱ»Á£×Ó´òÖеÄÇøÓò¼´ÎªHKµÄ³¤¶È£¬x=HK=R1-R2=L-£¨$\sqrt{2}$-1£©L=£¨2-$\sqrt{2}$£©L
´ð£º
£¨1£©Á½°å¼äµçѹµÄ×î´óÖµUmΪ$\frac{q{B}^{2}{L}^{2}}{2m}$£»
£¨2£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄ×ʱ¼ätmΪ$\frac{¦Ðm}{qB}$£®
£¨3£©CD°åÉÏ¿ÉÄܱ»Á£×Ó´òÖеÄÇøÓòµÄ³¤¶ÈxΪ£¨2-$\sqrt{2}$£©L£»
µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖеÄÔ˶¯£¬»³öÁ£×ÓµÄÔ˶¯¹ì¼£ºó£¬Óɼ¸ºÎ¹ØϵÇó¹ì¼£°ë¾¶ºÍÔ²ÐĽÇÊǹؼü£¬ÒªÕÆÎÕס°ë¾¶¹«Ê½¡¢ÖÜÆÚ¹«Ê½£®