题目内容

如图所示,在垂直纸面向里的匀强磁场的边界上,有两个质量和电量相同的正、负离子,从O点以相同的速度射入磁场中,射入方向均与边界成θ角,若不计重力,则正、负离子在磁场中(  )
分析:由题正负离子的质量与电量相同,进入同一磁场做匀速圆周运动的周期相同,根据偏向角的大小分析运动时间的长短.由牛顿第二定律研究轨道半径.根据圆的对称性,分析离子重新回到边界时速度方向关系和与O点距离.
解答:解:A、根据左手定则分析可知,正离子逆时针偏转,负离子顺时针偏转,重新回到边界时正离子的速度偏向角为2π-2θ,轨迹的圆心角也为2π-2θ,运动时间t=
2π-2θ
T
.同理,运动时间t=
T
,显然,时间不等.故A错误.
    B、根据牛顿第二定律得
     qvB=m
v2
r
   r=
mv
qB
,由题q、v、B大小均相同,则r相同.故B正确.
    C、正负离子在磁场中均做匀速圆周运动,速度沿轨迹的切线方向,根据圆的对称性可知,重新回到边界时速度大小与方向相同.故C正确.
    D、根据几何知识得知重新回到边界的位置与O点距离S=2rsinθ,r、θ相同,则S相同.故D正确.
故选BCD
点评:带电粒子在磁场中做匀速圆周运动问题求运动时间可用关系式有t=
θ
T
=
S
v
=
θ
ω
,θ是轨迹的圆心角,S弧长,ω是角速度,v是线速度.而且轨迹的圆心角等于速度的偏向角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网