题目内容
(1)物体与地面的动摩擦因数μ为多大?
(2)拉力F为多大?
(3 )0-30s内的位移?
分析:(1、2)根据图线的斜率求出物体匀加速和匀减速直线运动的加速度大小,通过牛顿第二定律求出拉力的大小和物体与地面间的动摩擦因数.
(3)通过图线与时间轴围成的面积求出物体沿斜面向上运动的最大距离.
(3)通过图线与时间轴围成的面积求出物体沿斜面向上运动的最大距离.
解答:解:设施加外力F的过程中物体的加速度为a1,撤去力F的瞬间物体的速度为v,撤去力F后物体上滑的加速度大小为a2,由牛顿第二定律得:
F-mgsinθ-μmgcosθ=ma1
mgsinθ+μmgcosθ=ma2
由图象可知:a2=0.5m/s2 a1=1m/s2
解得:μ=0.05
F=7.2N
0-30s物体沿斜面向上运动的距离x=
×30×10=150m
答:(1)物体与地面的动摩擦因数μ为0.05
(2)拉力F为7.2N
(3))0-30s内的位移150m.
F-mgsinθ-μmgcosθ=ma1
mgsinθ+μmgcosθ=ma2
由图象可知:a2=0.5m/s2 a1=1m/s2
解得:μ=0.05
F=7.2N
0-30s物体沿斜面向上运动的距离x=
| 1 |
| 2 |
答:(1)物体与地面的动摩擦因数μ为0.05
(2)拉力F为7.2N
(3))0-30s内的位移150m.
点评:解决本题的关键知道图线的斜率表示加速度的大小,通过牛顿第二定律进行求解.
练习册系列答案
相关题目