题目内容
从离地面高H处以水平速度v0抛出一石块A,又在地面上某处以足够大的初速v0′竖直向上抛出一石块B,问当符合什么条件时,两石块才能在空中相碰.
两石块在空间相遇应满足的条件为:
(1)A、B运动轨迹应在同一竖直平面内,且A的初速方向指向B所在的一侧;
(2)设B抛出点离A抛出点的水平距离为d,A的水平飞行距离s=v0
,则必须有d<s=v0
;
(3)d满足上述条件且确定后,A、B抛出的时间还存在一个时间间隔△t.A抛出到相遇B用时为tA=
.设B抛出到相遇A用时tB,
由H-
g(
)2=v0tB-
gt2B
可得:tB=
±
,
△t=|tA-tB|=|
±
|?.
式中tA>tB,则表示A先抛出;
tA<tB,则表示A后抛出.
两个解则是由于B可在上升时与A相遇,也可以是B在下降时与A相遇.
(1)A、B运动轨迹应在同一竖直平面内,且A的初速方向指向B所在的一侧;
(2)设B抛出点离A抛出点的水平距离为d,A的水平飞行距离s=v0
|
|
(3)d满足上述条件且确定后,A、B抛出的时间还存在一个时间间隔△t.A抛出到相遇B用时为tA=
d |
v0 |
由H-
1 |
2 |
d |
v0 |
1 |
2 |
可得:tB=
v0 |
g |
|
△t=|tA-tB|=|
d |
v0 |
|
式中tA>tB,则表示A先抛出;
tA<tB,则表示A后抛出.
两个解则是由于B可在上升时与A相遇,也可以是B在下降时与A相遇.
练习册系列答案
相关题目