题目内容

如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ.使木板与重物以共同的速度v0向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短。求:(1)木板第二次与墙碰撞前的速度;(2)木板从第一次与墙碰撞到再次碰撞所经历的时间。设木板足够长,重物始终在木板上.重力加速度为g。

 

【答案】

(1)(2)

【解析】(1)木板第一次与墙碰撞后,最后木板和重物达到一共同速度为v,

设木板的质量为m,重物的质量为2m,取向右为动量的正向,由动量守恒得:2mv0-mv0=3mv,

解得(3分)

(2)设从第一次与墙碰撞到木板和重物具有共同速度v所用的时间为t1,

对木板根据动量定理得:,(2分)

解得:

在达到共同速度v时,木板离墙的距离为L,

对木板根据动能定理得: (2分)

解得: 

(其他方法求解同样得分,例如:)

开始向右做匀速运动到第二次与墙碰撞的时间为:(1分)

从第一次碰撞到第二次碰撞所经过的时间为:t=t1+t2 (1分)

 由以上各式得(2分)

本题考查动量定理的应用,碰撞前后动量守恒,分别以木板和重物为研究对象应用动量定理列式求解,在根据动能定理列式求解

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网