题目内容

4.如图所示,屋檐上每隔相同的时间间隔滴下一滴水,当第5滴正欲滴下时,第1滴已刚好到达地面,而第3滴与第2滴分别位于窗户的上、下沿,若每滴水滴经过窗户的时间为t0=0.2s,不计水滴开始下落的初速度,求:
(1)此屋檐离地面多高?
(2)窗户的高度?

分析 (1)先求出相邻两滴水的时间间隔,从而得出水滴自由落体运动的时间,根据位移时间公式求出屋檐的高度.
(2)根据自由落体运动的位移时间公式求出窗户的高度.

解答 解:(1)由图可知,第3滴与第2滴分别位于窗户的上、下沿,若每滴水滴经过窗户的时间为t0=0.2s,知相邻两滴水的时间间隔为0.2s.
则水滴落地的时间为:t=4t0=4×0.2s=0.8s,
则屋檐离地的高度为:h=$\frac{1}{2}g{t}^{2}=\frac{1}{2}×10×0.64m=3.2m$.
(2)窗户的高度为:d=$\frac{1}{2}g(3{t}_{0})^{2}-\frac{1}{2}g(2{t}_{0})^{2}$=$\frac{1}{2}×10×(0.{6}^{2}-0.{4}^{2})$m=1m.
答:(1)屋檐离地的高度为3.2m.
(2)窗户的高度为1m.

点评 本题考查了自由落体运动位移时间公式的基本运用,通过每滴水滴经过窗户的时间为0.2s求出相邻两滴水的时间间隔是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网