ÌâÄ¿ÄÚÈÝ
ÔÚÈçͼËùʾ£¬xÖáÉÏ·½ÓÐÒ»ÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈµÄ·½Ïò´¹Ö±ÓÚÖ½ÃæÏòÀ´óСΪB£¬xÖáÏ·½ÓÐÒ»ÔÈÇ¿µç³¡£¬µç³¡Ç¿¶ÈµÄ´óСΪE£¬·½ÏòÓëyÖáµÄ¼Ð½Ç¦ÈΪ45¡ãÇÒбÏòÉÏ·½£®ÏÖÓÐÒ»ÖÊÁ¿Îªm¡¢µçÁ¿ÎªqµÄÕýÀë×Ó£¬ÒÔËÙ¶Èv0ÓÉyÖáÉϵÄAµãÑØyÖáÕý·½ÏòÉäÈë´Å³¡£¬¸ÃÀë×ÓÔڴų¡ÖÐÔ˶¯Ò»¶Îʱ¼äºó´ÓxÖáÉϵÄCµã½øÈëµç³¡ÇøÓò£¬¸ÃÀë×Ó¾CµãʱµÄËٶȷ½ÏòÓëxÖá¼Ð½ÇΪ45¡ã£®²»¼ÆÀë×ÓµÄÖØÁ¦£¬Éè´Å³¡ÇøÓòºÍµç³¡ÇøÓò×ã¹»´ó£® Çó£º
£¨1£©CµãµÄ×ø±ê£»
£¨2£©Àë×Ó´ÓAµã³ö·¢µ½µÚÈý´Î´©Ô½xÖáʱµÄÔ˶¯Ê±¼ä£»
£¨3£©Àë×ÓµÚËĴδ©Ô½xÖáʱËٶȵĴóС¼°Ëٶȷ½ÏòÓëµç³¡·½ÏòµÄ¼Ð½Ç£®
£¨1£©CµãµÄ×ø±ê£»
£¨2£©Àë×Ó´ÓAµã³ö·¢µ½µÚÈý´Î´©Ô½xÖáʱµÄÔ˶¯Ê±¼ä£»
£¨3£©Àë×ÓµÚËĴδ©Ô½xÖáʱËٶȵĴóС¼°Ëٶȷ½ÏòÓëµç³¡·½ÏòµÄ¼Ð½Ç£®
£¨1£©´Å³¡ÖдøµçÁ£×ÓÔÚÂåÂØ×ÈÁ¦×÷ÓÃÏÂ×öÔÈËÙÔ²ÖÜÔ˶¯£¬¹ÊÓÐqvB=m
µÃ r=
Á£×ÓÔ˶¯¹ì¼£ÈçͼËùʾ£¬Óɼ¸ºÎ֪ʶ֪£¬
xc=-(r+rcos45o)=-
¹ÊCµã×ø±êΪ£¨-
£¬0£©
£¨2£©T=
ÉèÁ£×Ó´ÓAµ½CµÄʱ¼äΪt1£¬Óɼ¸ºÎ֪ʶ֪£ºt1=
T=
ÉèÁ£×Ó´Ó½øÈëµç³¡µ½·µ»ØCµÄʱ¼äΪt2£¬ÆäÔڵ糡ÖÐ×öÔȱäËÙÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½£¬ÓÐ
qE=ma ¼°2v0=at2
ÁªÁ¢£¨6£©£¨7£©½âµÃ t2=
ÉèÁ£×ÓÔٴνøÈë´Å³¡ºóÔڴų¡ÖÐÔ˶¯µÄʱ¼äΪt3£¬ÓÉÌâÒâÖªt3=
T=
ËùÒÔÁ£×Ó´ÓAµãµ½µÚÈý´Î´©Ô½xÖáµÄʱ¼äΪt=t1+t2+t3=
+
£¨3£©Á£×Ó´ÓµÚÈý´Î¹ýxÖáµ½µÚËĴιýxÖáµÄ¹ý³ÌÊÇÔڵ糡ÖÐ×öÀàƽÅ×µÄÔ˶¯£¬¼´ÑØ×Åv0µÄ·½Ïò£¨ÉèΪx¡äÖᣩÒÔv0×öÔÈËÙÔ˶¯£¬ÑØ×ÅqEµÄ·½Ïò£¨ÉèΪy¡äÖᣩ×ö³õËÙ¶ÈΪ0µÄÔȼÓËÙÔ˶¯
¼´x'=v0t
y¡ä=
t2
vy¡ä=
t
ÉèÀë×ÓµÚËĴδ©Ô½xÖáʱËٶȵĴóСΪv£¬Ëٶȷ½ÏòÓëµç³¡·½ÏòµÄ¼Ð½ÇΪ¦Á£®
ÓÉͼÖм¸ºÎ¹Øϵ֪
=cos450
=cos45¡ã£¬v=
£¬tan¦Á=
×ÛºÏÉÏÊöµÃv=
v0£¬¦Á=arctan
´ð£º£¨1£©CµãµÄ×ø±êÊÇ£¨-
£¬0£©£»
£¨2£©Àë×Ó´ÓAµã³ö·¢µ½µÚÈý´Î´©Ô½xÖáʱµÄÔ˶¯Ê±¼äÊÇ
+
£»
£¨3£©Àë×ÓµÚËĴδ©Ô½xÖáʱËٶȵĴóСΪ
v0£¬Ëٶȷ½ÏòÓëµç³¡·½ÏòµÄ¼Ð½Ç¦Á=arctan
£®
v2 |
r |
mv |
qB |
Á£×ÓÔ˶¯¹ì¼£ÈçͼËùʾ£¬Óɼ¸ºÎ֪ʶ֪£¬
xc=-(r+rcos45o)=-
(2+
| ||
2qB |
¹ÊCµã×ø±êΪ£¨-
(2+
| ||
2qB |
£¨2£©T=
2¦Ðm |
qB |
ÉèÁ£×Ó´ÓAµ½CµÄʱ¼äΪt1£¬Óɼ¸ºÎ֪ʶ֪£ºt1=
5 |
8 |
5 |
4 |
¦Ðm |
qB |
ÉèÁ£×Ó´Ó½øÈëµç³¡µ½·µ»ØCµÄʱ¼äΪt2£¬ÆäÔڵ糡ÖÐ×öÔȱäËÙÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½£¬ÓÐ
qE=ma ¼°2v0=at2
ÁªÁ¢£¨6£©£¨7£©½âµÃ t2=
2mv0 |
qE |
ÉèÁ£×ÓÔٴνøÈë´Å³¡ºóÔڴų¡ÖÐÔ˶¯µÄʱ¼äΪt3£¬ÓÉÌâÒâÖªt3=
1 |
4 |
¦Ðm |
2qB |
ËùÒÔÁ£×Ó´ÓAµãµ½µÚÈý´Î´©Ô½xÖáµÄʱ¼äΪt=t1+t2+t3=
7¦Ðm |
4qB |
2mv0 |
qE |
£¨3£©Á£×Ó´ÓµÚÈý´Î¹ýxÖáµ½µÚËĴιýxÖáµÄ¹ý³ÌÊÇÔڵ糡ÖÐ×öÀàƽÅ×µÄÔ˶¯£¬¼´ÑØ×Åv0µÄ·½Ïò£¨ÉèΪx¡äÖᣩÒÔv0×öÔÈËÙÔ˶¯£¬ÑØ×ÅqEµÄ·½Ïò£¨ÉèΪy¡äÖᣩ×ö³õËÙ¶ÈΪ0µÄÔȼÓËÙÔ˶¯
¼´x'=v0t
y¡ä=
1 |
2 |
qE |
m |
vy¡ä=
qE |
m |
ÉèÀë×ÓµÚËĴδ©Ô½xÖáʱËٶȵĴóСΪv£¬Ëٶȷ½ÏòÓëµç³¡·½ÏòµÄ¼Ð½ÇΪ¦Á£®
ÓÉͼÖм¸ºÎ¹Øϵ֪
y¡ä |
x¡ä |
y¡ä |
x¡ä |
|
v0 |
vy¡ä |
×ÛºÏÉÏÊöµÃv=
5 |
1 |
2 |
´ð£º£¨1£©CµãµÄ×ø±êÊÇ£¨-
(2+
| ||
2qB |
£¨2£©Àë×Ó´ÓAµã³ö·¢µ½µÚÈý´Î´©Ô½xÖáʱµÄÔ˶¯Ê±¼äÊÇ
7¦Ðm |
4qB |
2mv0 |
qE |
£¨3£©Àë×ÓµÚËĴδ©Ô½xÖáʱËٶȵĴóСΪ
5 |
1 |
2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿