题目内容

如图所示,将一根长为L的不可伸长的轻质绳子分成等长的两段,绳子的一端悬挂于水平天花板上,另一端共同吊起一个重力为G的物体P并处于静止状态,试求:

1.若绳子与天花板的夹角为θ,求绳子张力的大小;

2.若绳子的最大承受张力为T0=5G/6,要保证绳子不被拉断,求天花板上两悬挂点距离的取值要求。

 

 

1.

2.d ≤0.8L

解析:(1)对物体P,其受力如图所示 …………1分

物体P处于静止状态,其所受合力为零 …………1分

所以 T= …………2分

(2)由T=可知,两悬挂点的距离越大,绳子的承受力就越大…………1分

T= T0=时,有= …………1分

所以sinθ=0.6…………1分

所以cosθ=0.8…………1分

设此时两悬挂点的距离为d0,有=…………2分

所以两悬挂点最大距离为d0=0.8L…………1分

天花板上两悬挂点距离的取值要求为d ≤ 0.8L…………1分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网