题目内容
【题目】如图所示,两平行竖直线MN、PQ间距离a,其间存在垂直纸面向里的匀强磁场(含边界PQ),磁感应强度为B,在MN上O点处有一粒子源,能射出质量为m,电量为q的带负电粒子,当速度方向与OM夹角θ=60°时,粒子恰好垂直PQ方向射出磁场,不计粒子间的相互作用及重力.则( )
A. 粒子的速率为
B. 粒子在磁场中运动的时间为
C. 若只改变粒子速度方向,使θ角能在0°至180°间不断变化,则粒子在磁场中运动的最长时间为
D. 若只改变粒子速度方向,使θ角能在0°至180°间不断变化,则PQ边界上有粒子射出的区间长度为2 a
【答案】ACD
【解析】
根据左手定则,由粒子带负电以及磁场方向可知粒子所受洛伦兹力的方向与速度的方向垂直指向右下方。当速度方向与OM夹角θ=60°时,粒子恰好垂直PQ方向射出磁场,
,
所以粒子运动的半径R==2a。由粒子在磁场中运动,洛伦兹力作向心力可得,Bvq=,所以,,故A正确;粒子在磁场中运动的周期T=,则粒子在磁场中运动的时间,故B错误;当θ=0°时,如图所示,可知粒子打在PQ上的位置为O点水平线上方a处;
,
当θ增大时,粒子打在PQ上的位置下移,知道粒子的运动轨迹与PQ相切时,如图所示,可知粒子打在PQ上的位置为O点水平线下方a处;当θ继续增大直到180°,粒子的运动轨迹与PQ不相交,直接从MN上射出,且在MN上的出射点不断上移直到O点,所以,若只改变粒子速度方向,使θ角能在0°至180°间不断变化,则PQ边界上有粒子射出的区间长度为2a,故D正确;若只改变粒子速度方向,使θ角能在0°至180°间不断变化,则粒子运动半径不变,那么粒子运动周期不变,所以,粒子在磁场中运动的轨迹所对应的弦长越长,则粒子在磁场中运动的越长,由D的分析可知,当粒子的出射点在PQ上时,粒子的弦长可取[a,2a]的任意值;当粒子的出射点在MN上时,粒子的弦长可取[0,2a]的任意值;所以粒子运动轨迹的弦长最大可取2a,此时对应的中心角φ=120°,所以,粒子在磁场中运动的最长时间,故C正确。故选ACD。