题目内容

质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为μ。初始时小物块停在箱子正中间,如图所示。现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,井与箱子保持相对静止。设碰撞都是弹性的,则整个过程中,系统损失的动能为

A.B.
C.D.

BD

解析试题分析:设物块与箱子相对静止时共同速度为V,则由动量守恒定律得,得,系统损失的动能为,B正确,AC错误.根据能量守恒定律得知,系统产生的内能等于系统损失的动能,根据功能关系得知,系统产生的内能等于系统克服摩擦力做的功,则有.D正确,
故选BD
考点:动量守恒定律;功能关系.
点评:两个相对运动的物体,当它们的运动速度相等时候,往往是最大距离或者最小距离的临界条件.本题是以两物体多次碰撞为载体,综合考查功能原理,动量守恒定 律,要求学生能依据题干和选项暗示,从两个不同角度探求系统动能的损失.又由于本题是陈题翻新,一部分学生易陷入某种思维定势漏选B或者D,另一方面,若 不仔细分析,易认为从起点开始到发生第一次碰撞相对路程为,则发生N次碰撞,相对路程为,而错选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网