题目内容
一玻璃立方体中心有一点状光源.今在立方体的部分表面镀上不透明薄膜,以致从光源发出的光线只经过一次折射不能透出立方体.已知该玻璃的折射率为,求镀膜的面积与立方体表面积之比的最小值
如图,考虑从玻璃立方体中心O点发出的一条光线,假设它斜射到玻璃立方体上表面发生折射.根据折射定律,有
①
式中,n是玻璃的折射率,入射角等于,是折射角.
现假设A点是上表面面积最小的不透明薄膜边缘上的一点.由题意,在A点刚好发生全反射,故
②
设线段OA在立方体上表面的投影长为RA,由几何关系,有
③
由题意,上表面所镀的面积最小的不透明薄膜应是半径为RA的圆,所求的镀膜面积与玻璃立方体的表面积S之比为
④
①
式中,n是玻璃的折射率,入射角等于,是折射角.
现假设A点是上表面面积最小的不透明薄膜边缘上的一点.由题意,在A点刚好发生全反射,故
②
设线段OA在立方体上表面的投影长为RA,由几何关系,有
③
由题意,上表面所镀的面积最小的不透明薄膜应是半径为RA的圆,所求的镀膜面积与玻璃立方体的表面积S之比为
④
练习册系列答案
相关题目