ÌâÄ¿ÄÚÈÝ
2£®ÈçͼËùʾ£¬Ïà¾àΪdµÄÁ½Æ½ÐнðÊô°åˮƽ·ÅÖ㬿ªÊ¼¿ª¹ØS1ºÍS2¾ù±ÕºÏʹƽÐаåµçÈÝÆ÷´øµç£®°å¼ä´æÔÚ´¹Ö±Ö½ÃæÏòÀïµÄÔÈÇ¿´Å³¡£®Ò»¸ö´øµçÁ£×ÓÇ¡ÄÜÒÔˮƽËÙ¶ÈvÏòÓÒÔÈËÙͨ¹ýÁ½°å¼ä£®ÔÚÒÔÏ·½·¨ÖУ¬ÓпÉÄÜʹ´øµçÁ£×ÓÈÔÄÜÔÈËÙͨ¹ýÁ½°åµÄÊÇ£¨²»¿¼ÂÇ´øµçÁ£×ÓËùÊÜÖØÁ¦£©£¨¡¡¡¡£©A£® | ±£³ÖS1ºÍS2¾ù±ÕºÏ£¬¼õСÁ½°å¼ä¾àÀ룬ͬʱ¼õСÁ£×ÓÉäÈëµÄËÙÂÊ | |
B£® | ±£³ÖS1ºÍS2¾ù±ÕºÏ£¬½«R1¡¢R3¾ùµ÷´óһЩ£¬Í¬Ê±¼õС°å¼äµÄ´Å¸ÐӦǿ¶È | |
C£® | °Ñ¿ª¹ØS2¶Ï¿ª£¬Ôö´óÁ½°å¼äµÄ¾àÀ룬ͬʱ¼õС°å¼äµÄ´Å¸ÐӦǿ¶È | |
D£® | °Ñ¿ª¹ØS1¶Ï¿ª£¬Ôö´ó°å¼äµÄ´Å¸ÐӦǿ¶È£¬Í¬Ê±¼õСÁ£×ÓÈëÉäµÄËÙÂÊ |
·ÖÎö ´øµçÁ£×ÓÊܵ糡Á¦ºÍÂåÂ××ÈÁ¦´¦ÓÚƽºâ״̬×öÔÈËÙÖ±ÏßÔ˶¯£®µçÈÝÆ÷Á½¶ËµÄµçѹµÈÓÚR2Á½¶ËµÄµçѹ£¬R3Ï൱ÓÚµ¼Ïߣ®
½â´ð ½â£ºA¡¢±£³ÖS1ºÍS2¾ù±ÕºÏ£¬¼õСÁ½°å¼ä¾àÀ룬µç³¡Ç¿¶ÈÔö´ó£¬µç³¡Á¦Ôö´ó£¬¼õСÁ£×ÓµÄÈëÉäËÙÂÊ£¬¸ù¾ÝF=qvB£¬ÖªÂåÂ××ÈÁ¦¼õС£¬Á½Á¦²»ÔÙƽºâ£¬²»ÄÜ×öÔÈËÙÖ±ÏßÔ˶¯£®¹ÊA´íÎó£®
B¡¢±£³ÖS1ºÍS2¾ù±ÕºÏ£¬½«R1¡¢R3¾ùµ÷´óһЩ£¬R2Á½¶ËµÄµçѹ±äС£¬µçÈÝÆ÷Á½¶ËµÄµçѹ±äС£¬µç³¡Ç¿¶È±äС£¬µç³¡Á¦±äС£®¼õС°å¼äµÄ´Å¸ÐӦǿ¶È£¬¸ù¾ÝF=qvB£¬ÖªÂåÂ××ÈÁ¦¼õС£¬Á½Á¦»¹¿ÉÄÜƽºâ£®¹ÊBÕýÈ·£®
C¡¢°Ñ¿ª¹ØS2¶Ï¿ª£¬Ôö´óÁ½°å¼äµÄ¾àÀ룬µçÈÝÆ÷´øµçÁ¿²»±ä£¬
¸ù¾ÝC=$\frac{Q}{U}$£¬C=$\frac{?S}{4¦Ðkd}$£¬E=$\frac{U}{d}$=$\frac{Q}{Cd}$=$\frac{4¦ÐkQ}{?S}$£¬Öªµç³¡Ç¿¶È²»±ä£¬¼õС´Å¸ÐӦǿ¶È£¬ÂåÂ××ÈÁ¦¼õС£¬Á½Á¦²»ÔÙƽºâ£®¹ÊC´íÎó£®
D¡¢°Ñ¿ª¹ØS1¶Ï¿ª£¬µçÈÝÆ÷»á·Åµç£¬µç³¡Ç¿¶È±äΪ0£¬µç³¡Á¦Îª0£¬ËùÒÔ²»ÔÙƽºâ£®¹ÊD´íÎó£®
¹ÊÑ¡£ºB£®
µãÆÀ ´¦ÀíµçÈÝÆ÷µÄ¶¯Ì¬·ÖÎö¹Ø¼üץס²»±äÁ¿£®ÈôµçÈÝÆ÷ÓëµçÔ´¶Ï¿ª£¬µçÁ¿±£³Ö²»±ä£»ÈôµçÈÝÆ÷ʼÖÕÓëµçÔ´ÏàÁ¬£¬µçÈÝÆ÷Á½¶Ë¼äµÄµçÊƲ³Ö²»±ä£®
A£® | ÊÖ¶ÔÎïÌå×ö¹¦20J | B£® | ºÏÍâÁ¦×ö¹¦4J | C£® | ºÏÍâÁ¦×ö¹¦24J | D£® | ÎïÌåÖØÁ¦×ö¹¦20J |
A£® | °ÚÇòÖÊÁ¿Æ«´ó£¬°Ú¶¯µÄ½Ç¶ÈƫС | B£® | ½«Ðüµãµ½°ÚÇò϶˵ij¤¶È×÷Ϊ°Ú³¤ | ||
C£® | ½«n´ÎÈ«Õñ¶¯¼ÇΪn©€1´ÎÈ«Õñ¶¯ | D£® | ½«n´ÎÈ«Õñ¶¯¼ÇΪn-1´ÎÈ«Õñ¶¯ |
A£® | $\sqrt{\frac{2h}{g}}$ | B£® | $\sqrt{\frac{2L}{g}}$ | C£® | $\sqrt{\frac{{2£¨{h+L}£©}}{g}}$ | D£® | $\sqrt{\frac{2£¨h+L£©}{g}}$-$\sqrt{\frac{2h}{g}}$ |
A£® | ½éÖÊÖÐÖʵãÕñ¶¯µÄÖÜÆÚÒ»¶¨ºÍÏàÓ¦µÄ²¨µÄÖÜÆÚÏàµÈ | |
B£® | ½éÖÊÖÐÖʵãÕñ¶¯µÄËÙ¶ÈÒ»¶¨ºÍÏàÓ¦µÄ²¨µÄ²¨ËÙÏàµÈ | |
C£® | ²¨µÄ´«²¥·½ÏòÒ»¶¨ºÍ½éÖÊÖÐÖʵãÕñ¶¯µÄ·½ÏòÒ»Ö | |
D£® | ºá²¨µÄ²¨·åÓ벨¹ÈÔÚÕñ¶¯·½ÏòÉϵľàÀëÒ»¶¨ÊÇÖʵãÕñ·ùµÄÁ½±¶ | |
E£® | ºá²¨ÖÐÏàÁڵIJ¨·åÓ벨¹È¶ÔӦƽºâλÖüäµÄ¾àÀëÒ»¶¨ÊDz¨³¤µÄ¶þ·ÖÖ®Ò» |