题目内容
5.两个中子和一个质子能结合成一个氚核,该核反应方程式为:210n+11H→31H;已知中子的质量是m1,质子的质量是m2,氚核的质量是m3,光在真空的速度为c,氚核的比结合能的表达式为$\frac{△E}{3}$=$\frac{(2{m}_{1}+{m}_{2}-{m}_{3}){C}^{2}}{3}$.分析 根据电荷数守恒、质量数守恒写出核反应方程式.根据爱因斯坦质能方程求出该核反应释放的核能,从而得知氘核的结合能;再根据核子数求出比结合能.
解答 解:核反应方程为:210n+11H→31H.氘核的结合能等于中子和质子结合成氘核释放的能量,根据质能方程知,△E=(2m1+m2-m3)c2.
则其比结合能为:$\frac{△E}{3}$=$\frac{(2{m}_{1}+{m}_{2}-{m}_{3}){C}^{2}}{3}$
故答案为:210n+11H→31H; $\frac{△E}{3}$=$\frac{(2{m}_{1}+{m}_{2}-{m}_{3}){C}^{2}}{3}$
点评 解决本题的关键知道核反应中电荷数守恒、质量数守恒,以及掌握爱因斯坦质能方程△E=△mc2.
练习册系列答案
相关题目
15.一个闭合的正方形金属线框放入如图所示的匀强磁场中,图中虚线表示磁场的边界,在外力作用下线框从磁场中以速度v匀速穿出.关于线框从磁场边界穿出过程,下列说法中正确的是( )
A. | 线框的运动速度越大,通过导线横截面的电荷量越多 | |
B. | 磁感应强度越大,拉力的功率越大 | |
C. | 线框的电阻越大,导线中产生的热量越多 | |
D. | 线框的边长与拉力做功的多少无关 |
16.如图所示,理想变压器原、副线圈匝数之比为n1:n2=22:1,原线圈接220V的正弦交变电压,副线圈连接理想交流电压表V、交流电流表A、理想二极管D和电容器C.则下述结论错误的是( )
A. | 电压表的示数为10 V | |
B. | 稳定后电流表的读数为零 | |
C. | 电容器不断地充电和放电,电量不断变化 | |
D. | 稳定后电容器两极板间电势差始终为10$\sqrt{2}$ V |
10.如图所示,一理想变压器原线圈匝数为n1=1000匝,副线圈匝数为n2=200匝,将原线圈接在u=200$\sqrt{2}$sin120πt(V)的交流电压上,电阻R=100Ω,电流表A为理想电流表.下列推断正确的是( )
A. | 变压器的输入功率是16W | |
B. | 穿过铁芯的磁通量的最大变化率为0.2Wb/s | |
C. | 电流表A的示数为0.4$\sqrt{2}$A | |
D. | 该交变电流的频率为$\frac{1}{60}$Hz |