ÌâÄ¿ÄÚÈÝ
2£®Èçͼ¼×Ëùʾ£¬PΪ½ðÊôÔ²»·£¬°ë¾¶r=5m£¬»·ÄڵĴų¡Ëæʱ¼ä±ä»¯µÄͼÏßÈçͼ¼×Ëùʾ£¬ÒÔ´¹Ö±Ö½ÃæÏòÀïΪ´Å³¡Õý·½Ïò£»A¡¢BÊÇ´øÓÐС¿×µÄ´øµç½ðÊô°å£¬UAB=100V£»C¡¢DÊÇÓëP»·ÏàÁ¬µÄˮƽ·ÅÖõÄƽÐнðÊô°å£¬°å³¤L=16m£¬Á½°å¼ä¾àD=16m£»QÊDZ߳¤d=24mµÄÕý·½Ðδų¡ÇøÓò£®P»·Ô²ÐÄ£¬A¡¢B°åС¿×Á¬Ïߣ¬C¡¢D°åÖÐÏß¼°Õý·½ÐÎQµÄÖÐÏ߶¼ÔÚͬһÏßˮƽÏßÉÏ£®ÏÖÓÐÖÊÁ¿m=1¡Á10-4kg£¬µçÁ¿q=+1.6¡Á10-5CµÄÁ£×Ó£¨ÖØÁ¦²»¼Æ£©Ô´Ô´²»¶ÏµÄ´ÓA°åС¿×Óɾ²Ö¹ÊÍ·Å£¬ÒÀ´Î½øÈëC¡¢DÁ½°å¼°Õý·½Ðδų¡ÇøÓò£®Ç󣺣¨1£©´øµçÁ£×ÓÀ뿪A¡¢B°å½øÈëC¡¢D°åʱµÄËÙ¶Èv£»
£¨2£©ÔÚͼ±ûÖÐ×÷³öC¡¢D½ðÊô°åÉϵĵçÊƲîUCDËæʱ¼ä±ä»¯µÄͼÏó£»
£¨3£©´øµçÁ£×Ó´©Ô½C¡¢D°å¹ý³ÌÖвúÉúµÄ×î´óƫתλÒÆY1ºÍ×îСƫתλÒÆY2£»
£¨4£©Óûʹ´øµçÁ£×ÓÈ«²¿´ÓÕý·½Ðδų¡µÄϱ߽çÉä³ö£¬´Å¸ÐӦǿ¶È´óСӦ¸ÃÂú×ãʲôÌõ¼þ£¿
·ÖÎö £¨1£©´øµçÁ£×ÓÔڵ糡ÖÐ×ö¼ÓËÙÔ˶¯£¬µç³¡Á¦×ö¹¦£¬Óɶ¯Äܶ¨Àí¼´¿ÉÇó³öËٶȣ»
£¨2£©¼«°åCDÖ®¼äµÄµçÊƲîµÈÓÚÔ²»·ÄÚ²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆ£¬ÓÉ·¨ÀµÚµç´Å¸ÐÓ¦¶¨Âɼ´¿ÉÇó³ö£»
£¨3£©´øµçÁ£×ÓÔÚ¼«°åCDÖ®¼ä·¢Éúƫת£¬½«Ô˶¯ÑØˮƽ·½ÏòÓëÊúÖ±·½Ïò·Ö½â¼´¿É£»
£¨4£©Çó³öÁ£×ÓÉä³öµç³¡ºóµÄËٶȣ¬Ôڴų¡ÖУ¬ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦Çó³öÁ£×ӵİ뾶£¬È»ºó½áºÏÁ£×Ӿʹų¡Ê±µÄ½Ç¶È£¬Í¨¹ý×÷ͼµÃ³öÁÙ½çÌõ¼þ£¬È»ºóÔÙ½áºÏ¼¸ºÎ¹ØϵÓë±È½Ï¹«Ê½¼´¿ÉÇó³ö£®
½â´ð ½â£º£¨1£©´øµçÁ£×ÓÔڵ糡ÖÐ×ö¼ÓËÙÔ˶¯£¬µç³¡Á¦×ö¹¦£¬Óɶ¯Äܶ¨ÀíµÃ£º$q{U}_{AB}=\frac{1}{2}m{v}_{0}^{2}$
ËùÒÔ£º${v}_{0}=\sqrt{\frac{2q{U}_{AB}}{m}}=\sqrt{\frac{2¡Á1.6¡Á1{0}^{-5}¡Á100}{1¡Á1{0}^{-4}}}$=4$\sqrt{2}$m/s
£¨2£©Ô²»·ÄÚ²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆ£¬ÓÉ·¨ÀµÚµç´Å¸ÐÓ¦¶¨Âɵãº$E=\frac{¡÷¦µ}{¡÷t}=\frac{¡÷B}{¡÷t}•S=\frac{\frac{8}{¦Ð}-0}{1}¡Á¦Ð¡Á{5}^{2}$=200V
PÖеĴų¡µÄ·½Ïò¿ªÊ¼Ê±ÏòÀï¼õС£¬ÓÉÀã´Î¶¨ÂÉ¿ÉÖª¸ÐÓ¦µç¶¯ÊƵķ½ÏòΪ˳ʱÕë·½Ïò£¬ËùÒÔC¼«°åµÄµçÊƸߣ®
¼«°åCDÖ®¼äµÄµçÊƲîµÈÓÚÔ²»·ÄÚ²úÉúµÄ¸ÐÓ¦µç¶¯ÊƼ´£ºUCD=E=200V
µ±´Å³¡µÄ±ä»¯Âʵķ½Ïò·¢Éú±ä»¯ºó£¬ÓÉÀã´Î¶¨ÂÉ¿ÉÖª£¬¸ÐÓ¦µç¶¯ÊƵķ½ÏòÏà·´£¬ËùÒÔ£ºUCD¡ä=-E=-200V
ËùÒÔCDÖ®¼äµÄµçÊƲîËæʱ¼äµÄ±ä»¯¹ØϵÈçͼ£º
£¨3£©´øµçÁ£×ÓÔÚ¼«°åCDÖ®¼ä·¢Éúƫת£¬ÑØˮƽ·½Ïò£ºL=v0t
ËùÒÔ£ºt=$\frac{L}{{v}_{0}}=\frac{16}{4\sqrt{2}}=2\sqrt{2}$s
Á£×ÓÔڵ糡ÖеļÓËٶȣº$a=\frac{F}{m}=\frac{qE}{m}=\frac{q{U}_{CD}}{mD}=\frac{1.6¡Á1{0}^{-5}¡Á200}{1¡Á1{0}^{-4}¡Á16}$=$\sqrt{2}$m/s2
ÕýµçºÉ¿ªÊ¼µÄÊܵ½µÄµç³¡Á¦µÄ·½ÏòÏòÏ£¬ÏÈÏòÏÂ×ö¼ÓËÙÔ˶¯£¬2sºóÏòÏÂ×ö¼õËÙÔ˶¯£¬ËùÒÔ¼ÓËÙµÄʱ¼äÔ½³¤£¬ÔòÁ£×ÓÔڵ糡ÖеÄλÒÆÔ½´ó£»
ÈôÖØÁ¦Ôڵ糡ÖпªÊ¼Ê±¼ÓËÙµÄʱ¼ä±È½Ï¶Ì£¬Á£×ÓÔڵ糡ÖÐÏÈÏòϼÓËÙ£¬Ò»¶Îʱ¼äºóÏòϼõËÙ£¬×îºóÓÖÏòÉϼÓËÙ£¬ÈôÂú×ãÒ»¶¨µÄÌõ¼þ£¬ÔòÁ£×ÓµÄƫתÁ¿¿ÉÄÜÇ¡ºÃµÈÓÚ0£®
1£®ÈôÁ£×ÓÔÚt=0ʱ½øÈëµç³¡£¬Ôò¼ÓËÙµÄʱ¼äÊÇ2s£¬Ñص糡·½ÏòµÄÄ©Ëٶȣº${v}_{y}=a•t¡ä=\sqrt{2}¡Á2=2\sqrt{2}$m/s
Á£×ÓÑص糡·½ÏòµÄλÒÆ£º${x}_{1}=\frac{1}{2}at{¡ä}^{2}=\frac{1}{2}¡Á\sqrt{2}¡Á{2}^{2}=2\sqrt{2}$m
´ËºóÁ£×ÓÏòÏÂ×ö¼õËÙÔ˶¯£¬Î»ÒÆ£º${x}_{2}={v}_{y}£¨t-t¡ä£©-\frac{1}{2}a£¨t-t¡ä£©^{2}$=$2\sqrt{2}¡Á£¨2\sqrt{2}-2£©-\frac{1}{2}¡Á\sqrt{2}¡Á{£¨2\sqrt{2}-2£©}^{2}$=$16-10\sqrt{2}$m
ËùÒÔ×î´óλÒÆ£º${Y}_{1}={x}_{1}+{x}_{2}=2\sqrt{2}+£¨16-10\sqrt{2}£©=16-8\sqrt{2}$m
ÈôÁ£×ÓÇ¡ºÃÔÚt=2sʱ½øÈëµç³¡ÖУ¬ÔòÁ£×ÓÒ»Ö±ÏòÉÏÔ˶¯£¬ËùÒÔÁ£×ÓÔ˶¯µÄ×îСλÒÆÒ»¶¨ÊÇ0£®
£¨4£©Á£×Ó´øÕýµç£¬¶øÕý·½ÐεĴų¡ÇøÓòÄڵĴų¡µÄ·½ÏòÏòÍ⣬ÓÉ×óÊÖ¶¨Ôò¿ÉÖª£¬Á£×ÓƫתµÄ·½ÏòÏòÏ£¬ËùÒÔÁ£×ÓÑص糡Ïß·½ÏòÏòϵķÖËÙ¶ÈÔ½´ó£¬ÏòϵÄλÒÆÔ½ÏòÏÂÔòÁ£×ÓÔ½ÈÝÒ×´ÓÕý·½Ðδų¡µÄϱ߽çÉä³ö£¬¶øÏòÉϵķÖËÙ¶ÈÔ½´ó£¬Ôڵ糡ÖÐÏòÉϵÄλÒÆÔ½´ó£¬ÔòÔ½²»ÈÝÒ×´ÓÕý·½Ðδų¡µÄϱ߽çÉä³ö£¬ËùÒÔÁ£×ÓÇ¡ºÃÔÚt=2sʱ½øÈëµç³¡ÖУ¬ÔòÁ£×ÓÒ»Ö±ÏòÉÏÔ˶¯Ê±µÄÁ£×Ó×î²»ÈÝÒ×´ÓÕý·½Ðδų¡µÄϱ߽çÉä³ö£®
Ç¡ºÃÔÚt=2sʱ½øÈëµç³¡µÄÁ£×ÓµÄÏòÉϵÄλÒÆ£º${x}_{3}=\frac{1}{2}at{¡å}^{2}=\frac{1}{2}¡Á\sqrt{2}¡Á{£¨4-2£©}^{2}=2\sqrt{2}$m
Á£×ÓÊúÖ±ÏòÉϵķÖËٶȣº${v}_{y}¡ä=a•t¡å=\sqrt{2}¡Á£¨4-2£©=2\sqrt{2}$m/s
Á£×ÓËٶȵķ½ÏòÓëˮƽ·½ÏòÖ®¼äµÄ¼Ð½Ç£º$tan¦È=\frac{{v}_{y}}{{v}_{0}}=\frac{2\sqrt{2}}{4\sqrt{2}}=\frac{1}{2}$£¬ËùÒÔ£º¦È=30¡ã
½áºÏÁ£×Ӿʹų¡Ê±µÄ½Ç¶È£¬×÷ͼ£º
ÓÉͼÖеļ¸ºÎ¹ØϵµÃ£º$r+rcos30¡ã=\frac{d}{2}+{x}_{3}$
Á£×ÓµÄËٶȣº$v=\sqrt{{v}_{0}^{2}{+v}_{y}^{2}}$=$2\sqrt{5}$m/s
Ôڴų¡ÖУ¬ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦µÃ£º$qvB=\frac{m{v}^{2}}{r}$
Á£×ӵİ뾶£º$r=\frac{mv}{qB}=\frac{1¡Á1{0}^{-4}¡Á2\sqrt{5}}{1.6¡Á1{0}^{-5}¡ÁB}=\frac{25\sqrt{5}}{2B}$£¬
ÁªÁ¢½âµÃ£º$B=\frac{50\sqrt{5}+25\sqrt{15}}{48+8\sqrt{2}}$
ÓÉÓڴŸÐӦǿ¶ÈÔ½´ó£¬ÔòÁ£×ÓÔ˶¯µÄ°ë¾¶Ò²¾ÍԽС£¬ËùÒÔÓûʹ´øµçÁ£×ÓÈ«²¿´ÓÕý·½Ðδų¡µÄϱ߽çÉä³ö£¬´Å¸ÐӦǿ¶È´óСӦ¸ÃÂú×ã$B¡Ü\frac{50\sqrt{5}+25\sqrt{15}}{48+8\sqrt{2}}$
´ð£º£¨1£©´øµçÁ£×ÓÀ뿪A¡¢B°å½øÈëC¡¢D°åʱµÄËÙ¶ÈÊÇ$4\sqrt{2}$m/s£»
£¨2£©ÔÚͼ±ûÖÐ×÷³öC¡¢D½ðÊô°åÉϵĵçÊƲîUCDËæʱ¼ä±ä»¯µÄͼÏóÈçͼ1£»
£¨3£©´øµçÁ£×Ó´©Ô½C¡¢D°å¹ý³ÌÖвúÉúµÄ×î´óƫתλÒÆÊÇ$16-8\sqrt{2}$mºÍ×îСƫתλÒÆÊÇ0£»
£¨4£©Óûʹ´øµçÁ£×ÓÈ«²¿´ÓÕý·½Ðδų¡µÄϱ߽çÉä³ö£¬´Å¸ÐӦǿ¶È´óСӦ¸ÃÂú×ã$B¡Ü\frac{50\sqrt{5}+25\sqrt{15}}{48+8\sqrt{2}}$£®
µãÆÀ ¸ÃÌ⽫´øµçÁ£×ÓÔڵ糡ÖеļÓËÙÎÊÌ⡢ƫתÎÊÌâÓë´øµçÁ£×ÓÔڴų¡ÖеÄÔ˶¯ÒÔ¼°·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉÏò½áºÏ£¬×ۺϿ¼²éµç³¡¡¢´Å³¡ÒÔ¼°µç´Å¸ÐÓ¦¶¨ÂÉ£¬ÊÇ¿¼²éµç´Å¸ÐÓ¦¶¨ÂÉÖбȽÏÉÙ¼ûµÄÇé¿ö£¬Ò²ÊÇ´øµçÁ£×ӲŴų¡ÖÐÔ˶¯µÄÌâÄ¿ÖÐÉÙ¼ûµÄÇé¿ö£¬¶øÇÒ¸ÃÌâÖеÄÊý¾ÝʼÖÕ´øÓиùºÅ£¬ÔÚ¼ÆËãµÄ¹ý³ÌÖÐҲҪϸÐÄ£®
A£® | f1=¦Ì1 Mg f2=¦Ì1 mg | B£® | f1=¦Ì1£¨M+m£©g f2=¦Ì1 mg | ||
C£® | f1=¦Ì1Mg f2=¦Ì2mg | D£® | f1=¦Ì1£¨M+m£©g f2=¦Ì2 mg |
A£® | Ô˶¯Ô±µÄ»úеÄÜÔö¼ÓÁË$\frac{1}{2}$mv2 | |
B£® | Ô˶¯Ô±µÄ»úеÄÜÔö¼ÓÁË$\frac{1}{2}$mv2+mgh | |
C£® | Ô˶¯Ô±µÄÖØÁ¦×ö¹¦ÎªWÖØ=mgh | |
D£® | Ô˶¯Ô±×ÔÉí×ö¹¦WÈË=$\frac{1}{2}$mv2+mgh-W×è |
A£® | $\frac{2G}{3}$ | B£® | $\frac{3G}{4}$ | C£® | $\frac{4G}{5}$ | D£® | $\frac{5G}{6}$ |
A£® | ÆøÌåµÄÃܶÈÔö¼Ó | B£® | ÆøÌå·Ö×ÓµÄƽ¾ù¶¯ÄÜÔö´ó | ||
C£® | Íâ½çûÓжÔÆøÌå×ö¹¦ | D£® | ÆøÌå´ÓÍâ½çÎüÊÕÁËÈÈÁ¿ |