题目内容
如图所示,一小球从光滑圆弧轨道顶端由静止开始下滑,进入光
滑水平面又压缩弹簧.在此过程中,小球重力势能和动能的最大值分
别为Ep和Ek,弹簧弹性势能的最大值为Ep′,则它们之间的关系为( ) 图2
A.Ep=Ek=Ep′ B.Ep>Ek>Ep′
C.Ep=Ek+Ep′ D.Ep+Ek=Ep′
A
【解析】
当小球处于最高点时,重力势能最大;当小球刚滚到水平面时重力势能全部转化为动能,此时动能最大;当小球压缩弹簧到最短时动能全部转化为弹性势能,弹性势能最大.由机械能守恒定律可知Ep=Ek=Ep′,故答案选A.
- QQ空间
- 新浪微博
- 百度搜藏
- 人人网
- 腾讯微博
- 开心网
- 腾讯朋友
- 百度空间
- 豆瓣网
- 搜狐微博
- MSN
- QQ收藏
- 我的淘宝
- 百度贴吧
- 搜狐白社会
- 更多...
百度分享
一个有一定厚度的圆盘,可以绕通过中心垂直于盘面的水平轴转动,用下面的方法测量它匀速转动时的角速度。
实验器材:电磁打点计时器、米尺、纸带、复写纸片。
实验步骤:
(1)如图1所示,将电磁打点计时器固定在桌面上,将纸带的一端穿过打点计时器的限位孔后,固定在待测圆盘的侧面上,使得圆盘转动时,纸带可以卷在圆盘侧面上。
(2)启动控制装置使圆盘转动,同时接通电源,打点计时器开始打点。
(3)经过一段时间,停止转动和打点,取下纸带,进行测量。
① 由已知量和测得量表示的角速度的表达式为ω= 。式中各量的意义是:
.
② 某次实验测得圆盘半径r=5.50×10-2m,得到纸带的一段如图2所示,求得角速度为 。
(1),T为电磁打点计时器打点的时间间隔,r为圆盘的半径,x2、x1是纸带上选定的两点分别对应的米尺的刻度值,n为选定的两点间的打点数(含两点)。 (2)6.8/s。 |
如图所示,一小球从光滑圆弧轨道顶端由静止开始下滑,进入光
滑水平面又压缩弹簧.在此过程中,小球重力势能和动能的最大值分
别为Ep和Ek,弹簧弹性势能的最大值为Ep′,则它们之间的关系为( ) 图2
A.Ep=Ek=Ep′ | B.Ep>Ek>Ep′ |
C.Ep=Ek+Ep′ | D.Ep+Ek=Ep′ |