题目内容

如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m电量为-q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在t=
T02
时刻通过S2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)
(1)求粒子到达S2时的速度大小v和极板间距d;
(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.
(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.
精英家教网
分析:(1)粒子在匀强电场中做匀加速直线运动,电场力做功等于粒子动能的增加;
(2)使粒子不与极板相撞,则运动的半径大于
L
4

(3)粒子在t=3T0时刻再次到达S2,且速度恰好为零,则从s1再次进入电场时的时刻是
5T0
2
,粒子从左向右应是水平匀速穿过无场区,距离为d,根据匀速运动的规律求得时间,粒子在左右磁场中的时间是相等的,粒子在左右磁场中的时间是相等的且都是半个周期,所以粒子运动的总时间是一个周期,即t′=T;然后根据洛伦兹力提供向心力,即可求得磁感应强度.
解答:解:(1)粒子在匀强电场中电场力做功等于粒子动能的增加,得:
qU0=
1
2
mv2

代入数据,得:v=
2qU
m

又:d=
1
2
v(
T0
2
)

联立以上两式,得:d=
T0
4
2qU0
m

(2)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,即:qvB=
mv2
r

得:r=
mv
qB

使粒子不与极板相撞,则运动的半径r≥
L
4

联立以上两式,得:B≤
4
L
2mU0
q

(3)粒子在t=3T0时刻再次到达S2,且速度恰好为零,根据运动的对称性,则从s1再次进入电场时的时刻是
5T0
2

粒子从左向右应是水平匀速穿过无场区,距离为d,时间为:t1=
d
v
=
T0
4

粒子在左右磁场中的时间是相等的,粒子在磁场中运动的总时间:t′=
5T0
2
-
T0
2
-
T0
4
=
7
4
T0

粒子在左右磁场中的时间是相等的且都是半个周期,所以粒子运动的总时间是一个周期,即t′=T;粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,得:
qvB=
m2r
T2
,vT=2πr
联立以上公式得:B=
8πm
7qT0

答:(1)粒子到达S2时的速度
2qU
m
和极板间距d=
T0
4
2qU0
m

(2)磁感应强度的大小应满足的条件B≤
4
L
2mU0
q

(3)粒子在磁场内运动的时间
7
4
T0
,磁感应强度的B=
8πm
7qT0
点评:该题中粒子在左右磁场中的时间是相等的,在电场中加速和减速的时间也是相等的,是这解题的关键.该题解题的过程复杂,公式较多,容易在解题的过程中出现错误.属于难度大的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网