题目内容

对质点运动的描述,以下说法正确的是
[     ]
A.平抛运动是加速度每时每刻都改变的运动
B.匀速圆周运动是速度不变的运动
C.某时刻质点的速度为零,但此时刻质点的加速度不一定为零
D.某时刻质点的加速度为零,则此时刻质点的速度也一定为零
练习册系列答案
相关题目

选做题(请从A、B和C三小题中选定两小题作答,如都作答,则按A、B两小题评分.)
A.(选修模块3-3)
(1)下列说法正确的是                                           (      )
A.熵是物体内分子运动无序程度的量度
B.由氢气的摩尔体积和每个氢分子的体积可估算出阿伏加德罗常数
C.满足能量守恒定律的客观过程都不是可以自发进行的
D.液体表面层的分子比液体内部的分子有更大的分子势能
(2)一定质量的理想气体由状态A经状态B变化到状态C的p-V图象如图所示.在由状态A变化到状态B的过程中,理想气体的温度         (填“升高”、“降低”或“不变”).在由状态A变化到状态C的过程中,理想气体吸收的热量      它对外界做的功(填“大于”、“小于”或“等于”).

(3)已知阿伏加德罗常数为6.0×1023mol-1,在标准状态(压强p0=1atm、温度t0=0℃)下任何气体的摩尔体积都为22.4l,设第(2)问中理想气体在状态A下的温度为0℃,求该气体的分子数.(计算结果取两位有效数字)
B.(选修模块3-4)
(1)以下说法中正确的是                                           (      )
A.拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度
B.全息照片往往用激光来拍摄,主要是利用了激光的相干性
C.根据宇宙大爆炸学说,遥远星球发出的红光被地球接收到时可能是红外线
D.超声波可以在真空中传播
(2)平行光a垂直射向一半径为R的玻璃半球的平面,其截面如图所示,发现只有P、Q之间所对圆心角为60°的球面上有光射出,则玻璃球对a光的折射率为        ,若仅将a平行光换成b平行光,测得有光射出的范围增大,设a、b两种色光在玻璃球中的速度分别为va和vb,则va       vb(选填“>”、“<”或“=”).

(3)在均匀介质中选取平衡位置在同一直线上的9个质点,相邻两质点间的距离均为0.1m,如图(a)所示.一列横波沿该直线向右传播,t=0时到达质点1,质点1开始向下运动,振幅为0.2m,经过时间0.3s第一次出现如图(b)所示的波形.试写出质点1的振动方程.

C.(选修模块3-5)
(1)下列说法正确的有                                              (   )
A.卢瑟福的α粒子散射实验可以估测原子核的大小
B.氢原子辐射出一个光子后,氢原子的电势能增大,核外电子的运动加速度增大
C.物质波是一种概率波,在微观物理学中不可以用“轨迹”来描述粒子的运动
D.若氢原子从 n =" 6" 能级向 n =" 1" 能级跃迁时辐射出的光不能使某金属发生光电效应,则氢原子从 n =" 6" 能级向 n =" 2" 能级跃迁时辐射出的光能使该金属发生光电效应
(2)正电子发射计算机断层显象(PET)的基本原理是:将放射性同位素注入人体,在人体内衰变放出的正电子与人体内的负电子相遇而湮灭,转化为一对γ光子,被探测器探测到,并经计算机处理后产生清晰的图象.根据PET的原理,在人体内衰变的方程式是               ;在PET中,的主要用途是作为              
(3)如图所示,质量分别为m1m2的两个小球在光滑水平面上分别以速度v1v2同向运动,并发生对心碰撞,碰后m2被右侧墙壁原速弹回,又与m1碰撞,再一次碰撞后两球都静止.求第一次碰后m1球速度的大小.

第三部分 运动学

第一讲 基本知识介绍

一. 基本概念

1.  质点

2.  参照物

3.  参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)

4.绝对运动,相对运动,牵连运动:v=v+v 

二.运动的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大学教材中表述为:v=dr/dt, 表示r对t 求导数

5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是

三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。)

6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好

三.等加速运动

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。此抛物线为在大炮上方h=v2/2g处,以v0平抛物体的轨迹。) 

练习题:

一盏灯挂在离地板高l2,天花板下面l1处。灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。)

四.刚体的平动和定轴转动

1. 我们讲过的圆周运动是平动而不是转动 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是标量,而极小的角位移是矢量

4.  同一刚体上两点的相对速度和相对加速度 

两点的相对距离不变,相对运动轨迹为圆弧,VA=VB+VAB,在AB连线上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三质点速度分别V,VB  ,VC      

求G的速度。

五.课后习题:

一只木筏离开河岸,初速度为V,方向垂直于岸边,航行路线如图。经过时间T木筏划到路线上标有符号处。河水速度恒定U用作图法找到在2T,3T,4T时刻木筏在航线上的确切位置。

五、处理问题的一般方法

(1)用微元法求解相关速度问题

例1:如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D,BC段水平,当以恒定水平速度v拉绳上的自由端时,A沿水平面前进,求当跨过B的两段绳子的夹角为α时,A的运动速度。

(vA

(2)抛体运动问题的一般处理方法

  1. 平抛运动
  2. 斜抛运动
  3. 常见的处理方法

(1)将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动

(2)将沿斜面和垂直于斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题

(3)将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解

例2:在掷铅球时,铅球出手时距地面的高度为h,若出手时的速度为V0,求以何角度掷球时,水平射程最远?最远射程为多少?

(α=、 x=

第二讲 运动的合成与分解、相对运动

(一)知识点点拨

  1. 力的独立性原理:各分力作用互不影响,单独起作用。
  2. 运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律
  3. 力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等
  4. 运动的合成分解:矢量合成分解的规律方法适用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

参考系的转换:动参考系,静参考系

相对运动:动点相对于动参考系的运动

绝对运动:动点相对于静参考系统(通常指固定于地面的参考系)的运动

牵连运动:动参考系相对于静参考系的运动

(5)位移合成定理:SA对地=SAB+SB对地

速度合成定理:V绝对=V相对+V牵连

加速度合成定理:a绝对=a相对+a牵连

(二)典型例题

(1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。求解雨滴相对于地的运动。

提示:矢量关系入图

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数?

提示:V人对梯=n1/t1

      V梯对地=n/t2

      V人对地=n/t3

V人对地= V人对梯+ V梯对地

答案:n=t2t3n1/(t2-t3)t1

(3)某人驾船从河岸A处出发横渡,如果使船头保持跟河岸垂直的方向航行,则经10min后到达正对岸下游120m的C处,如果他使船逆向上游,保持跟河岸成а角的方向航行,则经过12.5min恰好到达正对岸的B处,求河的宽度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河宽l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少?

提示:如图船航行

答案:1.58m/s

(三)同步练习

1.一辆汽车的正面玻璃一次安装成与水平方向倾斜角为β1=30°,另一次安装成倾角为β2=15°。问汽车两次速度之比为多少时,司机都是看见冰雹都是以竖直方向从车的正面玻璃上弹开?(冰雹相对地面是竖直下落的)

2、模型飞机以相对空气v=39km/h的速度绕一个边长2km的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?

3.图为从两列蒸汽机车上冒出的两股长幅气雾拖尾的照片(俯视)。两列车沿直轨道分别以速度v1=50km/h和v2=70km/h行驶,行驶方向如箭头所示,求风速。

4、细杆AB长L ,两端分别约束在x 、 y轴上运动,(1)试求杆上与A点相距aL(0< a <1)的P点运动轨迹;(2)如果vA为已知,试求P点的x 、 y向分速度vPx和vPy对杆方位角θ的函数。

(四)同步练习提示与答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案为:3。

2、提示:三角形各边的方向为飞机合速度的方向(而非机头的指向);

第二段和第三段大小相同。

参见右图,显然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法与练习一类似。答案为:3

4、提示:(1)写成参数方程后消参数θ。

(2)解法有讲究:以A端为参照, 则杆上各点只绕A转动。但鉴于杆子的实际运动情形如右图,应有v = vAcosθ,v = vA,可知B端相对A的转动线速度为:v + vAsinθ=  

P点的线速度必为  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,为椭圆;(2)vPx = avActgθ ,vPy =(1 - a)vA

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网