ÌâÄ¿ÄÚÈÝ
Ò»Öʵã×ÔxÖáÔµã³ö·¢£¬ÑØÕý·½ÏòÒÔ¼ÓËÙ¶Èa¼ÓËÙ£¬¾¹ýt0ʱ¼äËٶȱäΪv0£¬½Ó×ÅÒÔ¼ÓËÙ¶È-aÔ˶¯£¬µ±ËٶȱäΪ-
ʱ£¬¼ÓËÙ¶ÈÓÖ±äΪa£¬Ö±ÖÁËٶȱäΪ
ʱ£¬¼ÓËÙ¶ÈÔÙ±äΪ-a£¬Ö±µ½ËÙ¶ÈΪ-
¡£¬Æäv-tͼÏóÈçͼËùʾ£¬ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
v0 |
2 |
v0 |
4 |
v0 |
8 |
·ÖÎö£ºËÙ¶È-ʱ¼äͼÏóËٶȵÄÕý¸ººÅ±íʾËٶȵķ½Ïò£®ÖʵãÔÚ0-t0ʱ¼äÄÚ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Æ½¾ùËٶȵÈÓÚ
£®¸ù¾ÝÊýѧ֪ʶµÃµ½Î»ÒƵĹæÂÉ£¬ÔÙÇó³ö×ÜλÒÆ£®
v0 |
2 |
½â´ð£º½â£º
A¡¢ÓÉͼÏó¿´³ö£¬ÖʵãµÄËÙ¶È×÷ÖÜÆÚÐԱ仯£¬·½ÏòÔÚÖÜÆÚÐԵı仯£®¹ÊA´íÎó£®
B¡¢ÖʵãÔÚ0-t0ʱ¼äÄÚ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Æ½¾ùËٶȵÈÓÚ
£®¹ÊB´íÎó£®
C¡¢DÖʵãÔÚ0-t0ʱ¼äÄÚλÒÆΪx1=
v0?2t0=v0t0£®ÔÚ2t0-4t0ʱ¼äÄÚλÒÆΪx2=-
?
t0=-
£®ÔÚ4t0-6t0ʱ¼äÄÚλÒÆΪx3=
?
?
=
¡¹ÊÖʵãÔ˶¯¹ý³ÌÖÐÀëÔµãµÄ×î´ó¾àÀëΪx=x1+x2+x3¡=
£¬n¡ú¡Þʱ£¬x=v0t0£®¹ÊC´íÎó£¬DÕýÈ·£®
¹ÊÑ¡D
A¡¢ÓÉͼÏó¿´³ö£¬ÖʵãµÄËÙ¶È×÷ÖÜÆÚÐԱ仯£¬·½ÏòÔÚÖÜÆÚÐԵı仯£®¹ÊA´íÎó£®
B¡¢ÖʵãÔÚ0-t0ʱ¼äÄÚ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Æ½¾ùËٶȵÈÓÚ
v0 |
2 |
C¡¢DÖʵãÔÚ0-t0ʱ¼äÄÚλÒÆΪx1=
1 |
2 |
1 |
2 |
v0 |
2 |
v0t0 |
4 |
1 |
2 |
v0 |
4 |
t0 |
2 |
v0t0 |
16 |
v0t0 | ||
1-(
|
¹ÊÑ¡D
µãÆÀ£º±¾ÌâµÄÄѵãÊÇÔËÓÃÊýѧ֪ʶÇó½âÖʵãµÄ×î´óλÒÆ£¬Í¨¹ý¹éÄÉ·¨×ܽá¹æÂÉ£¬¿¼²éÔËÓÃÊýѧ֪ʶ½â¾öÎïÀíÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿