题目内容

20.从离地面500米的空中自由落下一个小球,取g=10m/s2求小球:
(1)经过多长时间落到地面?
(2)自开始下落计时,在第1s内位移,最后1s内的位移,下落时间为总时间的一半时的位移.
(3)下落前半段位移与后半段位移所用时间比.

分析 根据高度,结合位移时间公式求出自由落体运动的时间.根据位移时间公式求出第1s内的位移和最后1s内的位移,以及下落时间为总时间一半时的位移.
根据位移时间公式求出下落前半位移和后半位移所用的时间之比.

解答 解:(1)根据h=$\frac{1}{2}g{t}^{2}$得,t=$\sqrt{\frac{2h}{g}}=\sqrt{\frac{2×500}{10}}s=10s$.
(2)在第1s内的位移${x}_{1}=\frac{1}{2}g{{t}_{1}}^{2}=\frac{1}{2}×10×1m=5m$.
最后1s内的位移$x′=h-\frac{1}{2}gt{′}^{2}=500-\frac{1}{2}×10×81m=95m$.
下落时间为总时间一半时的位移${x}_{2}=\frac{1}{2}g{{t}_{2}}^{2}=\frac{1}{2}×10×25m=125m$.
(3)根据h=$\frac{1}{2}g{t}^{2}$得,t=$\sqrt{\frac{2h}{g}}$,
可知下落前半位移与整个位移所用的时间之比为1:$\sqrt{2}$,则下落前半位移与后半位移所用时间之比为1:$(\sqrt{2}-1)$.
答:(1)经过10s时间落到地面.
(2)第1s内的位移为5m,最后1s内的位移为95m,下落时间为总时间一半时的位移为125m.
(3)下落前半位移与后半位移所用时间之比为1:$(\sqrt{2}-1)$.

点评 解决本题的关键知道自由落体运动的运动规律,结合运动学公式灵活求解,基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网