题目内容

静止在湖面的小船上有两个人分别向相反方向水平抛出质量相同的小球,甲向左抛,乙向右抛,如图所示。甲先抛,乙后抛,抛出后两小球相对岸的速率相等,若不计水的阻力,则下列说法中正确的是(   )

A.两球抛出后,船往左以一定速度运动,乙球受到的冲量大一些
B.两球抛出后,船往右以一定速度运动,甲球受到的冲量大一些
C.两球抛出后,船的速度为零,甲球受到的冲量大一些
D.两球抛出后,船的速度为零,两球所受的冲量相等

C

解析试题分析:设小船的质量为M,小球的质量为m,甲球抛出后,根据动量守恒定律有:mv=(M+m)v′,v′的方向向右.乙球抛出后,规定向右为正方向,根据动量守恒定律有:(M+m)v′=mv+Mv″,解得v″=0.根据动量定理得,所受合力的冲量等于动量的变化,对于甲球,动量的变化量为mv,对于乙球动量的变化量为mv-mv′,知甲的动量变化量大于乙球的动量变化量,所以抛出时,人给甲球的冲量比人给乙球的冲量大.故C正确.
考点:动量守恒定律及动量定理的应用。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网