题目内容
如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A点由静止开始向B点运动,到达B点时外力F突然撤去,滑块随即冲上半径为 R=0.4米的1/4光滑圆弧面小车,小车立即沿光滑水平面PQ运动。设:开始时平面AB与圆弧CD相切,A、B、C三点在同一水平线上,令AB连线为X轴,且AB=d=0.64m,滑块在AB面上运动时,其动量随位移的变化关系为P=1.6
kgm/s,小车质量M=3.6kg,不计能量损失。求:
(1)滑块受水平推力F为多大? (2)滑块通过C点时,圆弧C点受到压力为多大? (3)滑块到达D点时,小车速度为多大? (4)滑块能否第二次通过C点? 若滑块第二次通过C点时,小车与滑块的速度分别为多大? (5)滑块从D点滑出再返回D点这一过程中,小车移动距离为多少? (g取10m/s2)
![]()
分析与解:(1)由P=1.6
=mv,代入x=0.64m,可得滑块到B点速度为:
VB=1.6
/m=1.6
=3.2m/s
A→B,由动能定理得:FS=
mVB2
所以 F=mVB2/(2S)=0.4X3.22/(2X0.64)=3.2N
(2)滑块滑上C立即做圆周运动,由牛顿第二定律得:
N-mg=mVC2/R 而VC=VB 则 N=mg+mVC2/R=0.4X10+0.4X3.22/0.4=14.2N
(3)滑块由C→D的过程中,滑块和小车组成系统在水平方向动量守恒,由于滑块始终紧贴着小车一起运动,在D点时,滑块和小车具有相同的水平速度VDX 。由动量守恒定律得:mVC=(M+m)VDX
所以 VDX=mVC/(M+m)=0.4X3.2/(3.6+0.4)=0.32m/s
(4)滑块一定能再次通过C点。因为滑块到达D点时,除与小车有相同的水平速度VDX外,还具有竖直向上的分速度VDY,因此滑块以后将脱离小车相对于小车做竖直上抛运动(相对地面做斜上抛运动)。因题中说明无能量损失,可知滑块在离车后一段时间内,始终处于D点的正上方(因两者在水平方向不受力作用,水平方向分运动为匀速运动,具有相同水平速度), 所以滑块返回时必重新落在小车的D点上,然后再圆孤下滑,最后由C点离开小车,做平抛运动落到地面上。由机械能守恒定律得:
mVC2=mgR+
(M+m)VDX2+
mVDY2
所以![]()
以滑块、小车为系统,以滑块滑上C点为初态,滑块第二次滑到C点时为末态,此过程中系统水平方向动量守恒,系统机械能守恒(注意:对滑块来说,此过程中弹力与速度不垂直,弹力做功,机械能不守恒)得:
mVC=mVC‘+MV 即
mVC2=
mVC’2+
MV2
上式中VC‘、V分别为滑块返回C点时,滑块与小车的速度,
V=2mVC/(M+m)=2X0.4X3.2/(3.6+0.4)=0.64m/s
VC’=(m-M)VC/(m+M)=(0.4-3.6)X3.2/(0.4+3.6)=-2.56m/s(与V反向)
(5)滑块离D到返回D这一过程中,小车做匀速直线运动,前进距离为:
△S=VDX2VDY/g=0.32X2X1.1/10=0.07m