ÌâÄ¿ÄÚÈÝ
£¨2012?º£µíÇøÄ£Ä⣩ÈçͼËùʾ£¬ÓÐ n£¨n£¾10£©¸öÏàͬµÄСÎï¿é£¨¿ÉÊÓΪÖʵ㣩¾²Ö¹ÔÚÇã½ÇΪ ¦È µÄÇãб¹ìµÀÉÏ£¬Îï¿éÓë¹ìµÀ¼äµÄ¶¯Ä¦²ÁÒòÊý¾ùΪ ¦Ì£®Ã¿¸öÎï¿éµÄÖÊÁ¿¾ùΪ m£¬ÏàÁÚÎï¿é¼äµÄ¾àÀë¾ùΪ l£¬×î϶˵ÄÎï¿éµ½¹ìµÀµ×¶ËµÄ¾àÀëҲΪ l£®Ê¹µÚ1¸öÎï¿éÒÔijһ³õËÙ¶È v0ÑعìµÀ¿ªÊ¼Ï»¬£¬ÔÚÿ´Î·¢ÉúÅöײʱÎï¿é¶¼Á¢¼´Õ³ºÏÔÚÒ»ÆðÔ˶¯£¬×îºón ¸öÎï¿éÕ³ÔÚÒ»ÆðºóÇ¡ºÃÍ£ÔÚ¹ìµÀµÄµ×¶Ë£®ÒÑÖª¿ÕÆø×èÁ¦¿ÉºöÂÔ²»¼Æ£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£®
£¨1£©ÇóµÚÒ»´ÎÅöײǰ˲¼äСÎï¿é1µÄËÙ¶Èv1µÄ´óС£»
£¨2£©ÉèµÚ5´ÎÅöײǰµÄ˲¼äÔ˶¯Îï¿éµÄ¶¯ÄÜΪEk5£¬µÚ5´ÎÅöײ¹ý³ÌÖÐϵͳËðʧµÄ»úеÄÜΪEËð5£¬ÇóEËð5ºÍEk5µÄ±ÈÖµ£»
£¨3£©ÇóÏ»¬µÄÕû¸ö¹ý³ÌÖÐÓÉÓÚÏ໥Åöײ¶øËðʧµÄ»úеÄÜ£®
£¨1£©ÇóµÚÒ»´ÎÅöײǰ˲¼äСÎï¿é1µÄËÙ¶Èv1µÄ´óС£»
£¨2£©ÉèµÚ5´ÎÅöײǰµÄ˲¼äÔ˶¯Îï¿éµÄ¶¯ÄÜΪEk5£¬µÚ5´ÎÅöײ¹ý³ÌÖÐϵͳËðʧµÄ»úеÄÜΪEËð5£¬ÇóEËð5ºÍEk5µÄ±ÈÖµ£»
£¨3£©ÇóÏ»¬µÄÕû¸ö¹ý³ÌÖÐÓÉÓÚÏ໥Åöײ¶øËðʧµÄ»úеÄÜ£®
·ÖÎö£º£¨1£©¶ÔÓÚÎï¿é1Ï»¬lµÄ¹ý³Ì£¬Óɶ¯Äܶ¨ÀíÁÐʽ¼´¿ÉÇóµÃv1µÄ´óС£»
£¨2£©ÉèµÚ5´ÎÅöײǰ£¬5¸öÎï¿éÒ»ÆðÔ˶¯µÄËٶȴóСΪv5£¬¶ÔµÚ5´ÎÅöײ£¬Óɶ¯Á¿Êغ㶨ÂÉÁÐʽ£¬¸ù¾Ý¶¯Äܵıí´ïʽд³öÅöײǰÔ˶¯Îï¿éµÄ¶¯ÄÜ£¬½ø¶øÇó³öÅöײ¹ý³ÌÖÐϵͳËðʧµÄ»úеÄܼ´¿ÉÇó½â£»
£¨3£©Çó³ön¸öľ¿éÔ˶¯ºÍÅöײµÄÈ«¹ý³ÌÖÐÖØÁ¦×öµÄ×ܹ¦ºÍ¿Ë·þĦ²Á×öµÄ×ܹ¦£¬¸ù¾Ý×ö¹¦ÓëÄÜÁ¿±ä»¯µÄ¹ØϵÁÐʽ¼´¿ÉÇó½â£®
£¨2£©ÉèµÚ5´ÎÅöײǰ£¬5¸öÎï¿éÒ»ÆðÔ˶¯µÄËٶȴóСΪv5£¬¶ÔµÚ5´ÎÅöײ£¬Óɶ¯Á¿Êغ㶨ÂÉÁÐʽ£¬¸ù¾Ý¶¯Äܵıí´ïʽд³öÅöײǰÔ˶¯Îï¿éµÄ¶¯ÄÜ£¬½ø¶øÇó³öÅöײ¹ý³ÌÖÐϵͳËðʧµÄ»úеÄܼ´¿ÉÇó½â£»
£¨3£©Çó³ön¸öľ¿éÔ˶¯ºÍÅöײµÄÈ«¹ý³ÌÖÐÖØÁ¦×öµÄ×ܹ¦ºÍ¿Ë·þĦ²Á×öµÄ×ܹ¦£¬¸ù¾Ý×ö¹¦ÓëÄÜÁ¿±ä»¯µÄ¹ØϵÁÐʽ¼´¿ÉÇó½â£®
½â´ð£º½â£º£¨1£©¶ÔÓÚÎï¿é1Ï»¬lµÄ¹ý³Ì£¬Óɶ¯Äܶ¨ÀíµÃmglsin¦È-¦Ìmglcos¦È=
m
-
m
µÃ v1=
£¨2£©ÉèµÚ5´ÎÅöײǰ£¬5¸öÎï¿éÒ»ÆðÔ˶¯µÄËٶȴóСΪv5£¬¶ÔµÚ5´ÎÅöײ£¬Óɶ¯Á¿Êغ㶨ÂÉÓÐ 5mv5=£¨5m+m£©v'5
ÅöײǰÔ˶¯Îï¿éµÄ¶¯ÄÜΪEk5=
¡Á5m
Åöײ¹ý³ÌÖÐϵͳËðʧµÄ»úеÄÜΪEËð5=
¡Á5m
-
¡Á6mv
½âµÃ
=
£¨3£©¶Ôn¸öľ¿éÔ˶¯ºÍÅöײµÄÈ«¹ý³Ì
ÖØÁ¦×öµÄ×ܹ¦WG=mglsin¦È(1+2+3+¡+n)=
mglsin¦È
¿Ë·þĦ²Á×öµÄ×ܹ¦Wf=¦Ìmgcos¦È?l(1+2+3+¡+n)=
¦Ìmglcos¦È
ÉèÕû¸ö¹ý³ÌÖÐÓÉÓÚÏ໥Åöײ¶øËðʧµÄ»úеÄÜΪEËð×Ü£¬Ôò¸ù¾Ý×ö¹¦ÓëÄÜÁ¿±ä»¯µÄ¹ØϵÓÐWG+
mv02=Wf+EËð×Ü
ÓÉÒÔÉϸ÷ʽÇó³ö EËð×Ü=
mv02+
mgl(sin¦È-¦Ìcos¦È)
´ð£º£¨1£©µÚÒ»´ÎÅöײǰ˲¼äСÎï¿é1µÄËÙ¶Èv1µÄ´óСΪ
£»
£¨2£©EËð5ºÍEk5µÄ±ÈֵΪ
£»
£¨3£©Ï»¬µÄÕû¸ö¹ý³ÌÖÐÓÉÓÚÏ໥Åöײ¶øËðʧµÄ»úеÄÜΪ
mv02+
mgl(sin¦È-¦Ìcos¦È)£®
1 |
2 |
v | 2 1 |
1 |
2 |
v | 2 0 |
µÃ v1=
|
£¨2£©ÉèµÚ5´ÎÅöײǰ£¬5¸öÎï¿éÒ»ÆðÔ˶¯µÄËٶȴóСΪv5£¬¶ÔµÚ5´ÎÅöײ£¬Óɶ¯Á¿Êغ㶨ÂÉÓÐ 5mv5=£¨5m+m£©v'5
ÅöײǰÔ˶¯Îï¿éµÄ¶¯ÄÜΪEk5=
1 |
2 |
v | 2 5 |
Åöײ¹ý³ÌÖÐϵͳËðʧµÄ»úеÄÜΪEËð5=
1 |
2 |
v | 2 5 |
1 |
2 |
¡ä | 2 5 |
½âµÃ
EËð5 |
Ek5 |
1 |
6 |
£¨3£©¶Ôn¸öľ¿éÔ˶¯ºÍÅöײµÄÈ«¹ý³Ì
ÖØÁ¦×öµÄ×ܹ¦WG=mglsin¦È(1+2+3+¡+n)=
n(n+1) |
2 |
¿Ë·þĦ²Á×öµÄ×ܹ¦Wf=¦Ìmgcos¦È?l(1+2+3+¡+n)=
n(n+1) |
2 |
ÉèÕû¸ö¹ý³ÌÖÐÓÉÓÚÏ໥Åöײ¶øËðʧµÄ»úеÄÜΪEËð×Ü£¬Ôò¸ù¾Ý×ö¹¦ÓëÄÜÁ¿±ä»¯µÄ¹ØϵÓÐWG+
1 |
2 |
ÓÉÒÔÉϸ÷ʽÇó³ö EËð×Ü=
1 |
2 |
n(n+1) |
2 |
´ð£º£¨1£©µÚÒ»´ÎÅöײǰ˲¼äСÎï¿é1µÄËÙ¶Èv1µÄ´óСΪ
|
£¨2£©EËð5ºÍEk5µÄ±ÈֵΪ
1 |
6 |
£¨3£©Ï»¬µÄÕû¸ö¹ý³ÌÖÐÓÉÓÚÏ໥Åöײ¶øËðʧµÄ»úеÄÜΪ
1 |
2 |
n(n+1) |
2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˶¯Äܶ¨Àí¡¢¶¯Á¿Êغ㶨Âɼ°¹¦ÄܹØϵµÄÖ±½ÓÓ¦Ó㬹ý³Ì½ÏΪ¸´ÔÓ£¬ÄѶÈÊÊÖУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿