ÌâÄ¿ÄÚÈÝ
ΪÁË¡°Ì½¾¿¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿µÄ¹Øϵ¡±£¬ÏÖÌṩÈçͼ1ËùʾʵÑé×°Öã®Çë˼¿¼Ì½ ¾¿Ë¼Â·²¢»Ø´ðÏÂÁÐÇë˼¿¼Ì½¾¿Ë¼Â·²¢»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÎªÁËÏû³ýС³µÓëˮƽľ°å Ö®¼äĦ²ÁÁ¦µÄÓ°ÏìÓ¦²ÉÈ¡×öÊÇ
A£®½«²»´ø»¬Âֵľ°åÒ»¶Ëµæ¸ßÊʵ±£¬Ê¹Ð¡³µÔÚ¹³ÂëÀ¶¯ÏÂÇ¡ºÃ×öÔÈËÙÔ˶¯£®
B£®½«²»´ø»¬Âֵľ°åÒ»¶ËÊʵ±µæ¸ß£¬Ê¹Ð¡³µÔÚ¹³ÂëÀ¶¯ÏÂÇ¡ºÃ×öÔȼÓËÙÔ˶¯£®
C£®½«²»´ø»¬Âֵľ°åÒ»¶ËÊʵ±µæ¸ß£¬ÔÚ²»¹Ò¹³ÂëµÄÇé¿öÏÂʹС³µÇ¡ºÃ×öÔÈËÙÔ˶¯£®
D£®½«²»´ø»¬Âֵľ°åÒ»¶ËÊʵ±µæ¸ß£¬ÔÚ²»¹Ò¹³ÂëµÄÇé¿öÏÂʹС³µÇ¡ºÃ×öÔȼÓËÙÔ˶¯£®
£¨2£©ÔÚ¡°Ì½¾¿¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿¹Øϵ¡±µÄʵÑéÖУ¬µÃµ½Ò»Ìõ´òµãµÄÖ½´ø£¬Èçͼ2Ëùʾ£¬ÒÑÖªÏàÁÚ¼ÆÊýµã¼äµÄʱ¼ä¼ä¸ôΪT£¬ÇÒ¼ä¾àx1¡¢x2¡¢x3¡¢x4¡¢x5¡¢x6ÒÑÁ¿³ö£¬ÔòС³µ¼ÓËٶȵıí´ïʽΪa=
£»
£¨3£©Ïû³ýС³µÓëˮƽľ°åÖ®¼äĦ²ÁÁ¦µÄÓ°Ïìºó£¬¿ÉÓù³Âë×ÜÖØÁ¦´úÌæС³µËùÊܵÄÀÁ¦£¬´Ëʱ¹³ÂëÖÊÁ¿mÓëС³µ×ÜÖÊÁ¿MÖ®¼äÓ¦Âú×ãµÄ¹Øϵ
£¨1£©ÎªÁËÏû³ýС³µÓëˮƽľ°å Ö®¼äĦ²ÁÁ¦µÄÓ°ÏìÓ¦²ÉÈ¡×öÊÇ
C
C
£»A£®½«²»´ø»¬Âֵľ°åÒ»¶Ëµæ¸ßÊʵ±£¬Ê¹Ð¡³µÔÚ¹³ÂëÀ¶¯ÏÂÇ¡ºÃ×öÔÈËÙÔ˶¯£®
B£®½«²»´ø»¬Âֵľ°åÒ»¶ËÊʵ±µæ¸ß£¬Ê¹Ð¡³µÔÚ¹³ÂëÀ¶¯ÏÂÇ¡ºÃ×öÔȼÓËÙÔ˶¯£®
C£®½«²»´ø»¬Âֵľ°åÒ»¶ËÊʵ±µæ¸ß£¬ÔÚ²»¹Ò¹³ÂëµÄÇé¿öÏÂʹС³µÇ¡ºÃ×öÔÈËÙÔ˶¯£®
D£®½«²»´ø»¬Âֵľ°åÒ»¶ËÊʵ±µæ¸ß£¬ÔÚ²»¹Ò¹³ÂëµÄÇé¿öÏÂʹС³µÇ¡ºÃ×öÔȼÓËÙÔ˶¯£®
£¨2£©ÔÚ¡°Ì½¾¿¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿¹Øϵ¡±µÄʵÑéÖУ¬µÃµ½Ò»Ìõ´òµãµÄÖ½´ø£¬Èçͼ2Ëùʾ£¬ÒÑÖªÏàÁÚ¼ÆÊýµã¼äµÄʱ¼ä¼ä¸ôΪT£¬ÇÒ¼ä¾àx1¡¢x2¡¢x3¡¢x4¡¢x5¡¢x6ÒÑÁ¿³ö£¬ÔòС³µ¼ÓËٶȵıí´ïʽΪa=
(x4+x5+x6)-(x1+x2+x3) |
9T2 |
(x4+x5+x6)-(x1+x2+x3) |
9T2 |
£¨3£©Ïû³ýС³µÓëˮƽľ°åÖ®¼äĦ²ÁÁ¦µÄÓ°Ïìºó£¬¿ÉÓù³Âë×ÜÖØÁ¦´úÌæС³µËùÊܵÄÀÁ¦£¬´Ëʱ¹³ÂëÖÊÁ¿mÓëС³µ×ÜÖÊÁ¿MÖ®¼äÓ¦Âú×ãµÄ¹Øϵ
m£¼£¼M
m£¼£¼M
£®·ÖÎö£º£¨1£©Æ½ºâĦ²ÁÁ¦¾ÍÊÇÈÃС³µÔÚÎÞÀÁ¦µÄ×÷ÓÃÏÂ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÈÃÖØÁ¦ÑØбÃæµÄ·ÖÁ¦µÈÓÚС³µÊܵ½µÄĦ²ÁÁ¦£®
£¨2£©´ÓÖ½´øÉÏÇó¼ÓËٶȿÉÒÔÓÃÖð²î·¨Çó½â£®
£¨3£©Ð¡³µÊܵ½µÄÀÁ¦F²»µÈÓÚÖØÎïµÄÖØÁ¦£¬ÉèÖØÎïµÄÖÊÁ¿m£¬Ð¡³µµÄÖÊÁ¿M£¬ÀÁ¦F=
£¬Ö»Óе±m£¼£¼Mʱ£¬F²Å½üËƵÈÓÚmg£®
£¨2£©´ÓÖ½´øÉÏÇó¼ÓËٶȿÉÒÔÓÃÖð²î·¨Çó½â£®
£¨3£©Ð¡³µÊܵ½µÄÀÁ¦F²»µÈÓÚÖØÎïµÄÖØÁ¦£¬ÉèÖØÎïµÄÖÊÁ¿m£¬Ð¡³µµÄÖÊÁ¿M£¬ÀÁ¦F=
Mmg |
M+m |
½â´ð£º½â£º£¨1£©Æ½ºâĦ²ÁÁ¦¾ÍÊÇÈÃС³µÔÚÎÞÀÁ¦µÄ×÷ÓÃÏÂ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÈÃÖØÁ¦ÑØбÃæµÄ·ÖÁ¦µÈÓÚС³µÊܵ½µÄĦ²ÁÁ¦£®ËùÒÔƽºâʱӦΪ£º½«²»´ø»¬Âֵľ°åÒ»¶ËÊʵ±µæ¸ß£¬ÔÚ²»¹Ò¹³ÂëµÄÇé¿öÏÂʹС³µÇ¡ºÃ×öÔÈËÙÔ˶¯£®¹ÊÑ¡£ºC
£¨2£©ÓÉÔȱäËÙÔ˶¯µÄ¹æÂɵãº
x4-x1=3aT2
x5-x2=3aT2
x6-x3=3aT2
ÁªÁ¢µÃ£º
(x4+x5+x6)-(x1+x2+x3)=9aT2
½âµÃ£ºa=
£¨3£©ÉèÖØÎïµÄÖÊÁ¿m£¬Ð¡³µµÄÖÊÁ¿M£¬Éè¼ÓËÙ¶ÈΪa£º
¶ÔС³µ£ºF=Ma
¶ÔÖØÎmg-F=ma
ÁªÁ¢µÃ£º
F=
£¬Ö»Óе±m£¼£¼Mʱ£¬²Å¿ÉÒÔºöÂÔm£¬F=
=mg
¹Ê´ð°¸Îª£º£¨1£©C£»£¨2£©
£»£¨3£©m£¼£¼M
£¨2£©ÓÉÔȱäËÙÔ˶¯µÄ¹æÂɵãº
x4-x1=3aT2
x5-x2=3aT2
x6-x3=3aT2
ÁªÁ¢µÃ£º
(x4+x5+x6)-(x1+x2+x3)=9aT2
½âµÃ£ºa=
(x4+x5+x6)-(x1+x2+x3) |
9T2 |
£¨3£©ÉèÖØÎïµÄÖÊÁ¿m£¬Ð¡³µµÄÖÊÁ¿M£¬Éè¼ÓËÙ¶ÈΪa£º
¶ÔС³µ£ºF=Ma
¶ÔÖØÎmg-F=ma
ÁªÁ¢µÃ£º
F=
Mmg |
M+m |
Mmg |
M |
¹Ê´ð°¸Îª£º£¨1£©C£»£¨2£©
(x4+x5+x6)-(x1+x2+x3) |
9T2 |
µãÆÀ£º×ö¡°Ì½¾¿¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿µÄ¹Øϵ¡±ÊµÑéʱ£¬ÊµÑéµÄÁ½¸öÇ°Ì᣺ƽºâĦ²ÁÁ¦ºÍM£¾£¾mÒªÃ÷È·£®´ÓÖ½´øÉÏÇó½â¼ÓËٶȺÍËÙ¶ÈÊǸßÖÐʵÑéÖг£Óõķ½·¨Ò»¶¨ÒªÊìÁ·ÕÆÎÕ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿