题目内容

6.某同学在利用打点计时器研究“匀变速直线运动”的实验中,用打点计时器记录了被小车拖动的纸带的运动情况,在纸带上确定出0、1、2、3、4、5、6共7个计数点,每两个相邻的计数点之间还有四个点没标出,其部分相邻点间的距离如图所示,则打下点4时小车的瞬时速度为0.314m/s,小车的加速度为0.510m/s2.(要求计算结果保留三位有效数字)

分析 根据某段时间内的平均速度等于中间时刻的瞬时速度求出计数点4的瞬时速度,根据连续相等时间内的位移之差是一恒量,求出小车的加速度.

解答 解:每两个计数点间有四个点没有画出,故两计数点间的时间间隔为:T=5×0.02=0.1s;
计数点4的瞬时速度为:
${v}_{4}=\frac{{x}_{35}}{2T}=\frac{(11.95-5.68)×1{0}^{-2}}{0.2}$m/s=0.314m/s.
根据△x=aT2,a=$\frac{△x}{{T}^{2}}=\frac{[(15.85-11.95)-(11.95-8.56)]×1{0}^{-2}}{0.01}$=0.510m/s2
故答案为:0.314m/s,0.510m/s2

点评 解决本题的关键掌握纸带的处理方法,会通过纸带求解瞬时速度和加速度,关键是匀变速直线运动推论的运用,注意单位换算和有效数字的保留.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网