ÌâÄ¿ÄÚÈÝ
19£®ÈçͼËùʾΪһÕæ¿Õʾ²¨¹Ü£¬µç×Ó´ÓµÆË¿K·¢³ö£¨³õËٶȲ»¼Æ£©£¬¾µÆË¿ÓëA°å¼äµÄ¼ÓËÙµçѹU1¼ÓËÙ£¬´ÓA°åÖÐÐÄ¿×ÑØÖÐÐÄÏßKOÉä³ö£¬È»ºó½øÈëÁ½¿éƽÐнðÊô°åM¡¢NÐγɵÄƫתµç³¡ÖУ¨Æ«×ªµç³¡¿ÉÊÓΪÔÈÇ¿µç³¡£©£¬µç×Ó½øÈëM¡¢N¼äµç³¡Ê±µÄËÙ¶ÈÓëµç³¡·½Ïò´¹Ö±£¬µç×Ó¾¹ýƫתµç³¡ºó´òÔÚÓ«¹âÆÁÉϵÄPµã£®ÒÑÖª¼ÓËÙµçѹΪU1£¬M¡¢NÁ½°å¼äµÄµçѹΪU2£¬Á½°å¼äµÄ¾àÀëΪd£¬°å³¤ÎªL1£¬°åÓҶ˵½Ó«¹âÆÁµÄ¾àÀëΪL2£¬µç×ÓµÄÖÊÁ¿Îªm£¬µçºÉÁ¿Îªe£®Ç󣺣¨1£©µç×Ó´©¹ýA°åʱµÄËÙ¶Èv0´óС£»
£¨2£©µç×Ó´Óƫתµç³¡Éä³öʱÑص糡·½ÏòµÄ²àÒÆÁ¿y1£»
£¨3£©µç×Ó´òÔÚÓ«¹âÆÁÉÏPµãʱµÄ¶¯ÄÜEKºÍËٶȷ½ÏòÓëÖÐÐÄÏßKO¼Ð½ÇµÄÕýÇÐÖµtan¦È£»
£¨4£©µç×Ó¾¹ýƫתµç³¡ºó´òÔÚÓ«¹âÆÁÉÏPµãµ½Ó«¹âÆÁÖÐÐÄOµãµÄ¾àÀëYÒÔ¼°ËùÓÃʱ¼ät2£®
·ÖÎö £¨1£©¶ÔÖ±Ïß¼ÓËÙ¹ý³Ì¸ù¾Ý¶¯Äܶ¨ÀíÁÐʽÇó½â£»
£¨2£©µç×ÓÒÔËÙ¶Èv0½øÈëƫתµç³¡ºó£¬×öÀàËÆƽÅ×Ô˶¯£¬¸ù¾ÝÀàËÆƽÅ×Ô˶¯µÄ·ÖÔ˶¯¹«Ê½ÁÐʽÇó½â¼´¿É£»
£¨3£©¶Ôµç×Ó´Ó½øÈëƫתµç³¡µ½´òÔÚÓ«¹âÆÁPµã¹ý³Ì¸ù¾Ý¶¯Äܶ¨ÀíÁÐʽÇó½âÄ©¶¯ÄÜ£»¸ù¾Ý·ÖËٶȹ«Ê½Çó½âËٶȷ½ÏòÓëÖÐÐÄÏßKO¼Ð½ÇµÄÕýÇÐÖµtan¦È£»
£¨4£©µç×ÓÀ뿪ƫתµç³¡ºó×÷ÔÈËÙÖ±ÏßÔ˶¯£¬Ë®Æ½·ÖÔ˶¯ÊÇÔÈËÙÖ±ÏßÔ˶¯£»ÀàËÆƽÅ×Ô˶¯µÄÄ©Ëٶȵķ´ÏòÑÓ³¤Ïßͨ¹ýˮƽ·ÖλÒƵÄÖе㣮
½â´ð ½â£º£¨1£©Éèµç×Ó¾µçѹU1¼ÓËÙºóµÄËÙ¶ÈΪv0£¬¸ù¾Ý¶¯Äܶ¨ÀíµÃ£º
e U1=$\frac{1}{2}mv_0^2$£¬½âµÃ£º${v_0}=\sqrt{\frac{{2e{U_1}}}{m}}$
£¨2£©µç×ÓÒÔËÙ¶Èv0½øÈëƫתµç³¡ºó£¬´¹Ö±Óڵ糡·½Ïò×÷ÔÈËÙÖ±ÏßÔ˶¯£¬Ñص糡·½Ïò×÷³õËÙ¶ÈΪÁãµÄÔȼÓËÙÖ±ÏßÔ˶¯£®Éèƫתµç³¡µÄµç³¡Ç¿¶ÈΪE£¬µç×ÓÔÚƫתµç³¡Ô˶¯µÄʱ¼äΪt1£¬µç×ӵļÓËÙ¶ÈΪa£¬À뿪ƫתµç³¡Ê±Ïà¶ÔÓÚÔÔ˶¯·½ÏòµÄ²àÒÆÁ¿Îªy1£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½µÃ£º
F=eE£¬E=$\frac{U_2}{d}$£¬F=ma£¬a=$\frac{{e{U_2}}}{md}$
t1=$\frac{L_1}{v_0}$£¬y1=$\frac{1}{2}at_1^2$£¬½âµÃ£ºy1=$\frac{{{U_2}L_1^2}}{{4{U_1}d}}$
£¨3£©µç×ÓÀ뿪ƫתµç³¡ºó×÷ÔÈËÙÖ±ÏßÔ˶¯£¬ÔòËü´Ó½øÈëƫתµç³¡µ½´òÔÚÓ«¹âÆÁPµã£¬µç³¡Á¦×öµÄ¹¦£º
W2=Fy1=$\frac{{e{y_1}{U_2}}}{d}$=EK-$\frac{1}{2}mv_0^2$
½âµÃ£ºEK=e U1+$\frac{e{U}_{2}^{2}{L}_{1}^{2}}{4{U}_{1}{{d}^{2}}_{\;}}$
Éèµç×ÓÀ뿪ƫתµç³¡Ê±Ñص糡·½ÏòËÙ¶ÈΪvy£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½£ºvy=at1=$\frac{{e{U_2}{L_1}}}{{dm{v_0}}}$
¶øµç×Ó´òÔÚÓ«¹âÆÁÉÏPµãʱµÄËٶȷ½ÏòÓëÖÐÐÄÏßKO¼Ð½ÇÓëµç×ÓÀ뿪ƫתµç³¡Æ«×ª½Ç¦ÈÏàͬ£¬Ôò£º
tan¦È=$\frac{v_y}{v_x}$=$\frac{e{U}_{2}{L}_{1}}{dm{v}_{\;}^{2}}$=$\frac{{U}_{2}{L}_{1}}{2d{U}_{1}}$
£¨4£©Éèµç×ÓÀ뿪ƫתµç³¡ºó´òÔÚÓ«¹âÆÁÉÏËùÓõÄʱ¼äΪt2£¬µç×Ó´òµ½Ó«¹âÆÁÉϵIJàÒÆÁ¿Îªy2£¬ÈçͼËùʾ£º
t2=$\frac{L_2}{v_0}$£¬y2=vyt2
½âµÃ£ºy2=$\frac{{{U_2}{L_1}{L_2}}}{{2d{U_1}}}$
Pµ½OµãµÄ¾àÀëΪ£º
Y=y1+y2=$\frac{{£¨2{L_2}+{L_1}£©{U_2}{L_1}}}{{4{U_1}d}}$
»òY=£¨ L2+$\frac{L_1}{2}$£©tan¦È=$\frac{{£¨2{L_2}+{L_1}£©{U_2}{L_1}}}{{4{U_1}d}}$£»
t2=$\frac{L_2}{v_0}$
´ð£º£¨1£©µç×Ó´©¹ýA°åʱµÄËÙ¶Èv0´óСΪ$\sqrt{\frac{2e{U}_{1}}{m}}$£»
£¨2£©µç×Ó´Óƫתµç³¡Éä³öʱÑص糡·½ÏòµÄ²àÒÆÁ¿y1Ϊ$\frac{{U}_{2}{L}_{1}^{2}}{4{U}_{1}d}$£»
£¨3£©µç×Ó´òÔÚÓ«¹âÆÁÉÏPµãʱµÄ¶¯ÄÜΪeU1+$\frac{e{U}_{2}^{2}{L}_{1}^{2}}{4{U}_{1}{{d}^{2}}_{\;}}$£¬Ëٶȷ½ÏòÓëÖÐÐÄÏßKO¼Ð½ÇµÄÕýÇÐֵΪ$\frac{{U}_{2}{L}_{1}}{2d{U}_{1}}$£»
£¨4£©µç×Ó¾¹ýƫתµç³¡ºó´òÔÚÓ«¹âÆÁÉÏPµãµ½Ó«¹âÆÁÖÐÐÄOµãµÄ¾àÀëYΪ$\frac{£¨2{L}_{2}+{L}_{1}£©{U}_{2}{L}_{1}}{4{U}_{1}d}$£¬ËùÓÃʱ¼äΪ$\frac{{L}_{2}}{{v}_{0}}$£®
µãÆÀ ´øµçÁ£×ÓÔڵ糡ÖÐÀàƽÅ×Ô˶¯µÄÑо¿·½·¨ÓëƽÅ×Ô˶¯ÏàËÆ£¬²ÉÓÃÔ˶¯µÄºÏ³ÉÓë·Ö½â£¬µ«´ËÀàÎÊÌâÖÐÍùÍù×Öĸ½Ï¶à£¬ÔÚÊéдʱһ¶¨ÒªÏ¸ÐÄ£®
A£® | ËٶȴóµÄʱ¼ä³¤ | B£® | ËÙ¶ÈСµÄʱ¼ä³¤ | ||
C£® | ²»ÂÛËٶȴóС£¬Á½ÎïÌåͬʱÂäµØ | D£® | ÂäµØµÄʱ¼ä³¤¶ÌÓÉÎïÌåµÄÖÊÁ¿¾ö¶¨ |
A£® | Ôڸò£Á§Öд«²¥Ê±£¬À¶¹âµÄËٶȽϴó | |
B£® | ÒÔÏàͬµÄÈëÉä½Ç´Ó¿ÕÆøбÉäÈë¸Ã²£Á§ÖУ¬À¶¹âµÄÕÛÉä½Ç½Ï´ó | |
C£® | ´Ó¸Ã²£Á§ÖÐÉäÈë¿ÕÆø·¢ÉúÈ«·´Éäʱ£¬ºì¹âÁÙ½ç½Ç½ÏС | |
D£® | ÓÃͬһװÖýøÐÐË«·ì¸ÉÉæʵÑ飬À¶¹âµÄÏàÁÚÌõÎƼä¾à½ÏС |
A£® | 4¦Ìmg | B£® | 5¦Ìmg | C£® | 6¦Ìmg | D£® | 8¦Ìmg |