题目内容
【题目】一带正电荷的小球沿光滑、水平、绝缘的桌面向右运动,如图所示,速度方向垂直于一匀强磁场,飞离桌面后,最终落在地面上.设飞行时间为t1、水平射程为s1、着地速率为v1;现撤去磁场其它条件不变,小球飞行时间为t2、水平射程为s2、着地速率为v2 . 则有( )
A.v1=v2
B.v1>v2
C.s1=s2
D.t1<t2
【答案】A
【解析】解:A、在有磁场,重力和洛仑兹力共同作用时,其洛仑兹力的方向每时每刻都跟速度方向垂直,不对粒子做功,不改变粒子的动能,有磁场和无磁场都只有重力作功,动能的增加是相同的.有磁场和无磁场,小球落地时速度方向并不相同,但速度的大小是相等的,即v1=v2,A符合题意,B不符合题意;
C、有磁场时,小球下落过程中要受重力和洛仑兹力共同作用,重力方向竖直向下,大小方向都不变;洛仑兹力的大小和方向都随速度的变化而变化,但在能落到地面的前提下洛仑兹力的方向跟速度方向垂直,总是指向右上方某个方向,其水平分力fx水平向右,竖直分力fy竖直向上.
如图所示,竖直方向的加速度仍向下,但小于重力加速度g,从而使运动时间比撤去磁场后要长,即t1>t2,小球水平方向也将加速运动,从而使水平距离比撤去磁场后要大,即s1>s2,CD不符合题意;
所以答案是:A.
【考点精析】解答此题的关键在于理解匀变速直线运动的速度、位移、时间的关系的相关知识,掌握速度公式:V=V0+at;位移公式:s=v0t+1/2at2;速度位移公式:vt2-v02=2as;以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值,以及对动能定理的综合应用的理解,了解应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷.