题目内容
如图所示,电源输入电压不变,要使电路中电流表示数变大,可采用的方法有( )
A. 将R上的滑片向上移动 B. 将R上的滑片向下移动
C. 将电键S掷向1 D. 将电键S掷向2
(5分)如图所示,为一列在均匀介质中沿x轴正方向传播的简谐横波在某时刻的波形图,波速为2m/s,则
A.质点P此时刻的振动方向沿y轴负方向
B.P点的振幅比Q点的小
C.经过△t=4s,质点P将向右移动8m
D.经过△t=4s,质点Q通过的路程是0.4m
如图所示,叠放在一起的A、B两物体放置在光滑水平地面上,A、B之间的水平接触面是粗糙的,斜面细线一端固定在A物体上,另一端固定于N点,水平恒力F始终不变,A、B两物体均处于静止状态,若将细线的固定点由N点缓慢下移至M点(绳长可变),A、B两物体仍处于静止状态,则
A.细线的拉力将减小
B.A物体所受的支持力将增大
C.A物体所受摩擦力将增大
D.水平地面所受压力将减小
如图所示,一个由绝缘材料制成的闭合环水平放置,环上各点在同一平面内,在环面内A、B两点分别固定两个点电荷和,其中为正电荷,一个带正电的小球P穿在环上,可以沿着闭合环无摩擦地滑动,现给小球P一定的初速度,小球恰好能沿环做速度大小不变的运动,则下列判断正确的是
A.B点固定的电荷一定为负电荷
B.B点固定的电荷一定为正电荷
C.和所产生的电场,在环上各点的电场强度都相同
D.和所产生的电场,在环上各点的电势都相等
如图所示,水平面内有一光滑金属导轨,其MN、PQ边的电阻不计,MP边的电阻阻值R=1.5Ω,MN与MP的夹角为135°,PQ与MP垂直,MP边长度小于1m。将质量m=2kg,电阻不计的足够长直导体棒搁在导轨上,并与MP平行。棒与MN、PQ交点G、H间的距离L=4m.空间存在垂直于导轨平面的匀强磁场,磁感应强度B=0.5T。在外力作用下,棒由GH处以一定的初速度向左做直线运动,运动时回路中的电流强度始终与初始时的电流强度相等。
(1)若初速度v1=3m/s,求棒在GH处所受的安培力大小FA。
(2)若初速度v2=1.5m/s,求棒向左移动距离2m到达EF所需时间Δt。
(3)在棒由GH处向左移动2m到达EF处的过程中,外力做功W=7J,求初速度v3.
如图所示的天平可用来测定磁感应强度B.天平的右臂下面挂有一个矩形线圈,宽为L,共N匝,线圈的下部悬在匀强磁场中,磁场方向垂直纸面.当线圈中通有电流I(方向如图)时,在天平左、右两边加上质量各为m1、m2的砝码,天平平衡.当电流反向(大小不变)时,右边再加上质量为m的砝码后,天平重新平衡.由此可知( )
A. B方向垂直纸面向里,大小为(m1-m2)g/NIL
B. B的方向垂直纸面向里,大小为mg/2NIL
C. B的方向垂直纸面向外,大小为(m1-m2)g/NIL
D. B的方向垂直纸面向外,大小为mg/2NIL
以下关于磁场和磁感应强度B的说法,正确的是( )
A. 磁场中某点的磁感应强度,根据公式,它跟F、I、l都有关
B. 磁场中某点的磁感应强度的方向垂直于该点的磁场方向
C. 磁感应强度越大的地方,穿过线圈的磁通量也一定越大
D. 穿过线圈的磁通量为零的地方,磁感应强度不一定为零
如图所示,足够长的光滑平行金属导轨MN、PQ竖直放置,磁感应强度B=0.50T的匀强磁场垂直穿过导轨平面,导轨的上端M与P间连接阻值为R=0.50Ω的电阻,导轨宽度L=0.40m。金属棒ab紧贴在导轨上,现使金属棒ab由静止开始下滑,通过传感器记录金属棒ab下滑的距离h与时间t的关系如下表所示。(金属棒ab和导轨电阻不计,g=10m/s2)求:
(1)在前0. 4s的时间内,金属棒ab中的平均电动势;
(2)金属棒的质量m;
(3)在前1.60s的时间内,电阻R上产生的热量QR 。
如图所示,理想变压器原.副线圈的匝数之比为,b是原线圈的中心抽头,电压表和电流表均为理想电表,从某时刻开始在原线圈c、d两端加上交变电压,其瞬时值,则( )
A.当单刀双掷开关与a连接时,电压表的示数为
B.当时,电压表的读数为
C.单刀双掷开关与a连接,当滑动变阻器滑片P向上移动的过程中,电压表的示数增大,电流表示数变小
D.当单刀双掷开关由a板向b时,电压表和电流表的示数均变小