ÌâÄ¿ÄÚÈÝ
£¨1£©ÊÔÓÉÍòÓÐÒýÁ¦¶¨ÂÉÍƵ¼£ºÈƵØÇò×öÔ²ÖÜÔ˶¯µÄÈËÔìÎÀÐǵÄÖÜÆÚT¸úËü¹ìµÀ°ë¾¶rµÄ3/2´Î·½³ÉÕý±È£®
£¨2£©A¡¢BÁ½¿ÅÈËÔìÎÀÐǵÄÈƵØÇò×öÔ²ÖÜÔ˶¯£¬ËüÃǵÄÔ²¹ìµÀÔÚͬһƽÃæÄÚ£¬ÖÜÆÚÖ®±ÈÊÇ
=
£®ÈôÁ½¿ÅÎÀÐǵÄ×î½ü¾àÀëµÈÓÚµØÇò°ë¾¶R£¬ÇóÕâÁ½¿ÅÎÀÐǵÄÖÜÆÚ¸÷ÊǶàÉÙ£¿´ÓÁ½¿ÅÎÀÐÇÏà¾à×î½ü¿ªÊ¼¼Æʱµ½Á½¿ÅÎÀÐÇÏà¾à×îÔ¶ÖÁÉÙ¾¹ý¶àÉÙʱ¼ä£¿ÒÑÖªÔÚµØÃ渽½üÈƵØÇò×öÔ²ÖÜÔ˶¯µÄÎÀÐÇÖÜÆÚΪT0£®
£¨2£©A¡¢BÁ½¿ÅÈËÔìÎÀÐǵÄÈƵØÇò×öÔ²ÖÜÔ˶¯£¬ËüÃǵÄÔ²¹ìµÀÔÚͬһƽÃæÄÚ£¬ÖÜÆÚÖ®±ÈÊÇ
T1 |
T2 |
3
| ||
2
|
£¨1£©ÈËÔìÎÀÐÇÈƵØÇò×öÔ²ÖÜÔ˶¯£¬ÍòÓÐÒýÁ¦³äµ±ÏòÐÄÁ¦£º
G
=m(
)2r
½âµÃ£ºT=
r
µØÇòÖÊÁ¿MÊdz£Á¿£¬Òò´ËÈËÔìÎÀÐÇÈƵØÇòÔ˶¯µÄÖÜÆÚTÓëÆä¹ìµÀ°ë¾¶rµÄ
´Î·½³ÉÕý±È£®
£¨2£©ÉèBÎÀÐǹìµÀ°ë¾¶Îªr2£¬ÔòAÎÀÐǹìµÀ°ë¾¶Îªr1=r2+R
=
=
¢Ù
½âµÃr2=2R£¬r1=3R
¿ÉµÃ£º
=
=3
=
=2
T1=3
T0
T2=2
T0
ÉèA¡¢BÁ½ÎÀÐÇ´ÓÏà¾à×î½ü¿ªÊ¼¾¹ýʱ¼ätµÚÒ»´Î´ïÏà¾à×îÔ¶£¬ÓÐ
£¨
-
£©t=¦Ð ¢Ú
½âµÃʱ¼ät=
¡Ö3.1T0
´ð£º£¨1£©Ö¤Ã÷ÈçÉÏ£»
£¨2£©ÕâÁ½¿ÅÎÀÐǵÄÖÜÆÚ·Ö±ðÊÇ3
T0¡¢2
T0£»´ÓÁ½¿ÅÎÀÐÇÏà¾à×î½ü¿ªÊ¼¼Æʱµ½Á½¿ÅÎÀÐÇÏà¾à×îÔ¶ÖÁÉÙ¾¹ý3.1T0£®
G
Mm |
r2 |
2¦Ð |
T |
½âµÃ£ºT=
2¦Ð | ||
|
3 |
2 |
µØÇòÖÊÁ¿MÊdz£Á¿£¬Òò´ËÈËÔìÎÀÐÇÈƵØÇòÔ˶¯µÄÖÜÆÚTÓëÆä¹ìµÀ°ë¾¶rµÄ
3 |
2 |
£¨2£©ÉèBÎÀÐǹìµÀ°ë¾¶Îªr2£¬ÔòAÎÀÐǹìµÀ°ë¾¶Îªr1=r2+R
T1 |
T2 |
(r2+R)
| ||||
|
3
| ||
2
|
½âµÃr2=2R£¬r1=3R
¿ÉµÃ£º
T1 |
T0 |
| ||||
R
|
3 |
T2 |
T0 |
| ||||
R
|
2 |
T1=3
3 |
T2=2
2 |
ÉèA¡¢BÁ½ÎÀÐÇ´ÓÏà¾à×î½ü¿ªÊ¼¾¹ýʱ¼ätµÚÒ»´Î´ïÏà¾à×îÔ¶£¬ÓÐ
£¨
2¦Ð |
T2 |
2¦Ð |
T1 |
½âµÃʱ¼ät=
3
| ||||
3
|
´ð£º£¨1£©Ö¤Ã÷ÈçÉÏ£»
£¨2£©ÕâÁ½¿ÅÎÀÐǵÄÖÜÆÚ·Ö±ðÊÇ3
3 |
2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿