题目内容

在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y=25cos(kx+
2
3
π
)(单位:m),式中k=1m-1.将一光滑小环套在该金属杆上,并从x=0处以v0=5m/s的初速度沿杆向下运动.取重力加速度g=10m/s2.(  )
分析:环在运动的过程中,机械能守恒,根据曲线方程可以确定环的位置,即环的高度的大小,再根据机械能守恒可以求得环的速度的大小和小环在x轴方向能运动的最远的位置.
解答:解:AB、光滑小环在沿金属杆运动的过程中,只有重力做功,机械能守恒,由曲线方程知,环在x=0处的y坐标是-
2.5
2
m,在x=
2
3
时,y=2.5cos(kx+
2
3
π
)=-2.5 m
选y=0处为零势能参考平面,则有:
1
2
mv02+mg(-
2.5
2
)=
1
2
mv2+mg(-2.5)

解得:v=5
2
m/s
,故A正确,B错误
CD、当环运动到最高点时,速度为零,
同理有:
1
2
mv02+mg(-
2.5
2
)=0+mgy

解得y=0,即:kx+
3
=π+
π
2

该小环在x轴方向最远能运动到x=
6
m
,故C错误,D正确
故选AD
点评:本题和数学的上的方程结合起来,根据方程来确定物体的位置,从而利用机械能守恒来解题,题目新颖,是个好题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网