题目内容
【题目】如图所示为一弹射游戏装置,长度L1=1m的水平轨道AB的右端固定弹射器,其左端B点与半径为r=0.2m的半圆形光滑竖直轨道平滑连接,与半圆形轨道圆心O点等高处固定一长度L2=0.2m的水平槽DE,水平槽左端D点距O点距离L3=0.2m。已知滑块质量m=0.5kg,可视为质点,初始时放置在弹簧原长处A点,滑块与弹簧未拴接,弹射时从静止释放滑块且弹簧的弹性势能完全转化为滑块动能,滑块与AB间的动摩擦因数μ=0.5,忽略空气阻力,每次游戏都要求滑块能安全通过半圆形轨道最高点C,求:
(1)若滑块恰好能通过圆形轨道最高点C时的速度大小vC;
(2)若滑块到达B点时的速度为vB=4m/s,它经过B点时对圆形轨道的压力FN大小及弹簧弹性势能Ep0;
(3)若要求滑块最终能落入水平槽DE(不考虑落入后的反弹),则对应弹簧弹性势能的取值范围。
【答案】(1);(2)45N,6.5J;(3)
【解析】
(1)由于滑块恰好能通过圆形轨道最高点C,可得
代入数据解得
(2)在B点,由牛顿第二定律得
代入数据解得
根据牛顿第三定律,滑块对圆轨道的压力大小为45N
弹射时从静止释放到滑块运动到B的过程中,根据动能定理有
代入数据解得
(3)滑块从C点飞出后做平抛运动,可得
解得
水平方向有
由于要求滑块要能落入水平槽DE,则x1=0.2m,x2=0.4m 代入数据解得
,
又因为要安全通过C点,所以
弹射时从静止释放到滑块运动到C的过程中,根据动能定理有
解得
弹簧弹性势能的取值范围为
练习册系列答案
相关题目