ÌâÄ¿ÄÚÈÝ
6£®ÔÚͼʾÇøÓòÖУ¬XÖáÉÏ·½ÓÐÒ»ÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈµÄ·½Ïò´¹Ö±Ö½ÃæÏòÀ´óСΪB£¬½ñÓÐÒ»ÖÊ×ÓÒÔËÙ¶Èv0ÓÉYÖáÉϵÄAµãÑØYÖáÕý·½ÏòÉäÈë´Å³¡£¬ÖÊ×ÓÔڴų¡ÖÐÔ˶¯Ò»¶Îʱ¼äÒÔºó´ÓCµã½øÈëXÖáÏ·½µÄÔÈÇ¿µç³¡ÇøÓòÖУ¬ÔÚCµãËٶȷ½ÏòÓëXÖáÕý·½Ïò¼Ð½ÇΪ45¡ã£¬¸ÃÔÈÇ¿µç³¡µÄÇ¿¶È´óСΪE£¬·½ÏòÓëYÖá¼Ð½ÇΪ45¡ãÇÒбÏò×óÉÏ·½£¬ÒÑÖªÖÊ×ÓµÄÖÊÁ¿Îªm£¬µçÁ¿Îªq£¬²»¼ÆÖÊ×ÓµÄÖØÁ¦£¬£¨´Å³¡ÇøÓòºÍµç³¡ÇøÓò×ã¹»´ó£©Ç󣺣¨1£©CµãµÄ×ø±ê£®
£¨2£©ÖÊ×Ó´ÓAµã³ö·¢µ½µÚÈý´Î´©Ô½XÖáʱµÄÔ˶¯Ê±¼ä£®
£¨3£©ÖÊ×ÓµÚËĴδ©Ô½XÖáʱËٶȵĴóС¼°Ëٶȷ½ÏòÓëµç³¡E·½ÏòµÄ¼Ð½ÇµÄÕýÇÐÖµ£®
·ÖÎö £¨1£©´øµçÁ£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÂåÂØ×ÈÁ¦³äµ±ÏòÐÄÁ¦¿ÉÇóµÃÔ²µÄ°ë¾¶£¬ÔÙÓɼ¸ºÎ¹Øϵ¿ÉµÃ³öCµãµÄ×ø±ê£»
£¨2£©·ÖÎöÁ£×ÓµÚÈý´Î¾¹ýxÖáʱµÄÔ˶¯¹ý³Ì£»Óɼ¸ºÎ¹Øϵ¿ÉÖª£¬Á£×ÓÔڴų¡ÖÐת¹ýµÄ½Ç¶È£¬´Ó¶øÇó³öÆä¾¹ýµÄʱ¼ä£¬Ôڵ糡ÖÐÁ£×Ó×öÀàƽÅ×Ô˶¯£¬ÓÉËٶȵĺϳÉÓë·Ö½â¹Øϵ¿ÉÇóµÃµç³¡ÖеÄʱ¼ä£¬´Ó¶øÇóµÃ×Üʱ¼ä£»
£¨3£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬µÚÒ»´Î½øÈë´Å³¡Ê±×öÍù¸´Ô˶¯£»ÔÙ½øÈë´Å³¡ºó×öÔ²ÖÜÔ˶¯£¬´Ëºó½øÈëµç³¡×öÀàƽÅ×Ô˶¯£¬Óɼ¸ºÎ¹Øϵ¼°Ô˶¯µÄºÏ³ÉÓë·Ö½â¿ÉÇóµÃ½á¹û£®
½â´ð ½â£º£¨1£©´øµçÁ£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂØ×ÈÁ¦³äµ±ÏòÐÄÁ¦£»ÔòÓУº
$q{v_0}B=\frac{mv_0^2}{R}$
R=$\frac{m{v}_{0}}{Bq}$£»
Óɼ¸ºÎ¹Øϵ¿ÉÖª£º
xC=-£¨R+Rcos45¡ã£©=-$\frac{m{v}_{0}}{Bq}$£¨1+$\frac{\sqrt{2}}{2}$£©
µÃ£ºC×ø±êΪ£º£¨-$\frac{2+\sqrt{2}}{2}\frac{m{v}_{0}}{Bq}$£¬0£©
£¨2£©´øµçÁ£×ÓÔÚ½øÈëµç³¡ºó×ö¼õËÙÔ˶¯£¬ºóÔ·½Ïò·µ»Ø£»È»ºóÔÙ½øÈë´Å³¡ºó×öÔ²ÖÜÔ˶¯£»×Üʱ¼ä°üÀ¨´Å³¡ÖеÄʱ¼ä¼°µç³¡ÖÐÍù·µµÄʱ¼ä£»ÔòÓУº
Ôڴų¡ÖÐ$T=\frac{2¦ÐR}{v_0}$
$T=\frac{2¦Ðm}{qB}$
${t_´Å}=\frac{{\frac{7}{4}¦Ð}}{2¦Ð}T=\frac{7¦Ðm}{4qB}$£»
Ôڵ糡ÖÐEq=ma
${t_µç}=\frac{{2{v_0}}}{a}=\frac{{2m{v_0}}}{qE}$
$t={t_µç}+{t_´Å}=\frac{{2m{v_0}}}{qE}+\frac{7¦Ðm}{4qB}$£»
£¨3£©ÖÊ×ÓµÚÈý´Î´©Ô½xÖáºó£¬Ôڵ糡ÖÐ×÷ÀàƽÅ×Ô˶¯£¬ÓÉÓÚv0Óëx¸º·½Ïò³É45£®½Ç£¬ËùÒÔµÚËĴδ©Ô½xÖáʱ£º
${v}_{0}{t}_{4}=\frac{1}{2}\frac{qE}{m}•{t}_{4}^{2}$
µÃ£º${t}_{4}=\frac{2m{v}_{0}}{qE}$
Ñص糡·½ÏòËٶȵķÖÁ¿Îª£º${v}_{E}=\frac{qE}{m}•{t}_{4}=2{v}_{0}$
ËùÒÔ£¬ËٶȵĴóСΪ$v=\sqrt{{v}_{0}^{2}+{v}_{E}^{2}}=\sqrt{5}{v}_{0}$
Ëٶȷ½ÏòÓëµç³¡EµÄ¼Ð½ÇÉèΪ¦È£¬ÈçͼËùʾ£¬Ôò£º$tan¦È=\frac{{v}_{0}}{{v}_{E}}=\frac{1}{2}$
µÃ£º$¦È=arctan\frac{1}{2}$
´ð£º£¨1£©CµãµÄ×ø±êΪ£¨-$\frac{2+\sqrt{2}}{2}\frac{m{v}_{0}}{Bq}$£¬0£©£®
£¨2£©ÖÊ×Ó´ÓAµã³ö·¢µ½µÚÈý´Î´©Ô½XÖáʱµÄÔ˶¯Ê±¼äÊÇ$\frac{2m{v}_{0}}{qE}+\frac{7¦Ðm}{4qB}$£®
£¨3£©ÖÊ×ÓµÚËĴδ©Ô½XÖáʱËٶȵĴóСÊÇ$\sqrt{5}{v}_{0}$£¬Ëٶȷ½ÏòÓëµç³¡E·½ÏòµÄ¼Ð½ÇµÄÕýÇÐÖµÊÇ$\frac{1}{2}$£®
µãÆÀ ±¾Ìâ¹ý³ÌºÜ¸´ÔÓ£¬Òª×¢ÒâÈÏÕæ·ÖÎö´øµçÁ£×ÓµÄÔ˶¯Çé¿ö£¬·Ö±ðÀûÓõ糡¼°´Å³¡ÖеÄÐÔÖʽøÐзÖÎöÔ˶¯£»Òª×¢Ò⼸ºÎ¹ØϵµÄÕýÈ·Ó¦Óã®
X+${\;}_{3}^{7}$Li¡ú2Y
Y+${\;}_{4}^{14}$N¡úX+${\;}_{8}^{17}$O
Y+${\;}_{4}^{9}$Be¡úZ+${\;}_{6}^{12}$C
X¡¢Y¡¢ZÊÇÈýÖÖ²»Í¬µÄÁ£×Ó£¬ÆäÖÐZÊÇ£¨¡¡¡¡£©
A£® | ¦ÁÁ£×Ó | B£® | ÖÊ×Ó | C£® | ÖÐ×Ó | D£® | µç×Ó |
A£® | 2.5 sǰС³µ×ö±ä¼ÓËÙÔ˶¯ | B£® | 2.5 sºóС³µ×ö±ä¼ÓËÙÔ˶¯ | ||
C£® | 2.5 sǰС³µËùÊÜĦ²ÁÁ¦²»±ä | D£® | 2.5 sºóС³µËùÊÜĦ²ÁÁ¦²»±ä |
A£® | $\frac{mg}{M}$ | B£® | $\frac{£¨M+m£©g}{m}$ | C£® | $\frac{Mg}{m}$ | D£® | $\frac{£¨M+m£©g}{M}$ |
A£® | µçÄÜת»¯Îª»¯Ñ§ÄܵŦÂÊΪUI | B£® | ³äµçÆ÷Êä³öµÄµç¹¦ÂÊΪUI | ||
C£® | µç³Ø²úÉúµÄÈȹ¦ÂÊΪI2r | D£® | ³äµçÆ÷µÄ³äµçЧÂÊΪ$\frac{Ir}{U}$¡Á100% |
A£® | h | B£® | 1.5h | C£® | 1.6h | D£® | 2.2h |
A£® | ΪÁ˱£´æÓñÃ׵صÄË®·Ö£¬¿ÉÒÔ³úËɵØÃ棬ÆÆ»µÍÁÈÀÀïµÄëϸ¹Ü | |
B£® | ÀûÓÃdz²ãº£Ë®ºÍÉî²ãº£Ë®Ö®¼äµÄζȲîÖÆÔìÒ»ÖÖÈÈ»ú£¬½«º£Ë®µÄÒ»²¿·ÖÄÚÄÜת»¯Îª»úеÄÜÊÇ¿ÉÄÜµÄ | |
C£® | Íâ½ç¶ÔÎïÌå×ö¹¦£¬ÎïÌåµÄÄÚÄܱض¨Ôö¼Ó | |
D£® | Òº¾§µÄ¹âѧÐÔÖʲ»Ëæζȡ¢µç´Å×÷Óñ仯¶ø¸Ä±ä | |
E£® | ÎïÖÊÊǾ§Ì廹ÊǷǾ§Ì壬±È½Ï¿É¿¿µÄ°ì·¨ÊÇ´ÓÈÛ»¯¹ý³ÌζÈÊÇ·ñ±ä»¯À´Åжϣ® |