题目内容

(12分)航天宇航员在月球表面完成了如下实验:如图所示,在月球表面固定一竖直光滑圆形轨道,在轨道内的最低点,放一可视为质点的小球,当给小球水平初速度v0时,小球刚好能在竖直面内做完整的圆周运动。已知圆形轨道半径为r,月球的半径为R。求:

(1)月球表面的重力加速度g;

(2)轨道半径为2R的环月卫星周期T。

 

【答案】

(1)g=v02/5r  (2)4

【解析】

试题分析:(1)设小球的质量为m,因小球恰好能完成圆周运动,

小球在最高点有:mg=mv2/r

最低点到最高点的过程有-mg.2r=mv2/2-mv20/2

联立这两式得:g=v02/5r

(2)设月球的质量为M,卫星质量为m

对卫星有GMm/4R2=m4 22R/T2

对小球有GMm/R2=mg

联立③④⑤得 T=2 =4

考点:本题考查圆周运动规律和机械能守恒定律以及万有引力定律的应用。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网